Dysembryoplastic neuroepithelial tumors: proton MR spectroscopy, diffusion and perfusion characteristics.

Neuroradiology

Department of Radiology, Military Medical Faculty, Gulhane Military Medical Academy, Etlik, 06018 Ankara, Turkey.

Published: October 2007

Introduction: We describe the magnetic resonance (MR) imaging characteristics of dysembryoplastic neuroepithelial tumors (DNT) and discuss their differential diagnosis.

Material And Methods: Proton MR spectroscopy (TE 30 and 136 ms), diffusion-weighted and perfusion images were retrospectively evaluated in 22 patients with pathologically proven DNT (17 male and 5 female, mean age 18.7 years) and 14 control subjects (10 male and 4 female, mean age 16.9 years). The results from the DNT patients and from the control subjects were compared using an independent sample t-test and the degree of correlation was tested by Pearson's correlation.

Results: All DNTs were solitary and in a supratentorial cortical or subcortical location (ten temporal, eight frontal and four parietal). They had low-signal on T1-weighted images and high-signal on T2-weighted images without a prominent mass effect. Additionally a cystic appearance (six patients, 27.3%), cortical dysplasia (six patients, 27.3%) and contrast enhancement (four patients, 18.2%) were also noted. No significant differences were detected in NAA/Cho, NAA/Cr, NAA/Cho+Cr or Cho/Cr ratios between DNT and normal brain. DNTs had a significantly higher mI/Cr ratio and apparent diffusion coefficient (ADC) values and lower cerebral blood values than normal parenchyma (P < 0.001). ADC had the highest correlation with the diagnosis of DNT (r = 0.996) followed by relative cerebral blood volume (rCBV) (r = -0.883) and mI/Cr ratio (r = 0.663).

Conclusion: Proton MR spectroscopy, diffusion-weighted and perfusion imaging characteristics of DNTs provide additional information to their MR imaging findings. The MR spectrum showing a slight increase in mI/Cr ratio, and higher ADC and lower rCBV values than normal parenchyma help to differentiate DNTs from other cortical tumors, which had higher rCBV and lower ADC values than DNTs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00234-007-0263-8DOI Listing

Publication Analysis

Top Keywords

proton spectroscopy
12
mi/cr ratio
12
dysembryoplastic neuroepithelial
8
neuroepithelial tumors
8
imaging characteristics
8
diffusion-weighted perfusion
8
male female
8
female age
8
control subjects
8
patients 273%
8

Similar Publications

Enhanced room temperature ammonia gas sensing based on a multichannel PSS-functionalized graphene/PANI network.

Analyst

January 2025

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516007, China.

Disordered polymerization of polymers widens the polymerization degree distribution, which leads to uncontrollable thickness and significantly weakens their sensing performance. Herein, poly(sodium -styrenesulfonate)-functionalized reduced graphene oxide (PSS-rGO) with multichannel chain structures coated with thin polyaniline layer (PSS-rGO/PANI) nanocomposites was synthesized a facile interfacial polymerization route. The morphology and microstructure of the PSS-rGO/PANI nanocomposites were characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Here, we investigate the interactions between five representative gaseous analytes and two poly(ionic liquids) (PILs) based on the sulfopropyl acrylate polyanion in combination with the alkylphosphonium cations, P and P, and their nanocomposites with fullerenes (C, C) to reveal the potential of PILs as sensitive layers for gas sensors. The gaseous analytes were chosen based on their molecular size (all of them containing two carbon atoms) and variation of functional groups: alcohol (ethanol), nitrile (acetonitrile), aldehyde (acetaldehyde), halogenated alkane (bromoethane), and carboxylic acid (acetic acid). The six variations of PILs-PSPA (), PSPA + C ( + C), PSPA + C ( + C), and PSPA (), PSPA + C ( + C), PSPA + C ( + C)-were characterized by UV-vis and Raman spectroscopy, and their interactions with each gaseous analyte were studied using electrochemical impedance spectroscopy.

View Article and Find Full Text PDF

Bacterial levans are biopolymers composed of fructose units linked by β-2,6 glycosidic bonds that are degradable, nontoxic and flexible, representing a green technology with significant applications across various industries. Fermented soybeans are a common source of bacteria-producing polysaccharides. In this study, KKSB4, KKSB6 and KKSB7 isolated from traditionally fermented soybean (Thua-nao), along with strain 5.

View Article and Find Full Text PDF

Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.

View Article and Find Full Text PDF

Phase-Engineered Bi-RuO Single-Atom Alloy Oxide Boosting Oxygen Evolution Electrocatalysis in Proton Exchange Membrane Water Electrolyzer.

Adv Mater

January 2025

Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.

Engineering nanomaterials at single-atomic sites can enable unprecedented catalytic properties for broad applications, yet it remains challenging to do so on RuO-based electrocatalysts for proton exchange membrane water electrolyzer (PEMWE). Herein, the rational design and construction of Bi-RuO single-atom alloy oxide (SAAO) are presented to boost acidic oxygen evolution reaction (OER), via phase engineering a novel hexagonal close packed (hcp) RuBi single-atom alloy. This Bi-RuO SAAO electrocatalyst exhibits a low overpotential of 192 mV and superb stability over 650 h at 10 mA cm, enabling a practical PEMWE that needs only 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!