A single-shot measurement of terahertz electromagnetic pulses is implemented using two-dimensional electro-optic imaging with dual echelon optics. The reported embodiment produces sequentially delayed multiprobe beamlets, routinely providing a time window of >10 ps with ~25 fs temporal step sizes. Because of its simplicity and robustness, the technique is ideally suited for real-time ultrashort relativistic electron bunch characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.32.001968 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
Electrically switchable second harmonic generation (SHG) is highly valuable in electro-optic modulators, which can be deployed in data communication and quantum optics. Coupling circular dichroism (CD) with an electrically controlled SHG process is advantageous because it enhances the signal transmission bandwidth and security while enabling multiple modulation modes for optical logic. However, ferroelectrically switchable chiral second-order nonlinearity is rarely reported.
View Article and Find Full Text PDFRecently, two-dimensional terahertz spectroscopy (2DTS) has attracted increasing attention for studying complex solids. A number of recent studies have applied 2DTS either with long pulses or away from any material resonances, situations that yield unconventional 2DTS spectra that are often difficult to interpret. Here, we clarify the generic origins of observed spectral features by examining 2DTS spectra of ZnTe, a model system with a featureless optical susceptibility at low terahertz frequencies.
View Article and Find Full Text PDFNano Lett
September 2024
Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China.
Two-dimensional materials (2DMs) have exhibited remarkably tunable optical characteristics, which have been applied for significant applications in communications, sensing, and computing. However, the reported tunable optical properties of 2DMs are almost volatile, impeding them in the applications of multifarious emerging frameworks such as programmable operation and neuromorphic computing. In this work, nonvolatile electro-optic response is developed by the graphene-AlO-InSe heterostructure integrating with microring resonators (MRRs).
View Article and Find Full Text PDFLight Sci Appl
April 2024
Department of Electrical and Computer Engineering, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
Tunable optical materials are indispensable elements in modern optoelectronics, especially in integrated photonics circuits where precise control over the effective refractive index is essential for diverse applications. Two-dimensional materials like transition metal dichalcogenides (TMDs) and graphene exhibit remarkable optical responses to external stimuli. However, achieving distinctive modulation across short-wave infrared (SWIR) regions while enabling precise phase control at low signal loss within a compact footprint remains an ongoing challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!