Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
D-Serine, a recently identified gliotransmitter, serves as an endogenous coagonist binding to the glycine site of N-methyl-D-aspartate (NMDA) receptors. However, it is not clear whether this native ligand is able to bind to and modulate alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptors. In the present study, we showed that D-serine was able to concentration-dependently inhibit kainate-induced AMPA receptor-mediated current in acutely isolated hippocampal neurons. The blocking action of D-serine on AMPA receptors was characterized by a shift in concentration-response curve of kainate-induced current to the right with no change in the maximal response and independent of holding potential in the range of -80 to +60 mV. This is consistent with a model that D-serine is a competitive antagonist on AMPA receptors. In contrast, L-serine did not exert such an inhibitory action. Consistent with this observation, we found that several D-isoforms, but not L-isoforms, of endogenous and exogenous amino acids were able to block AMPA receptors. These results indicate that there is a low affinity and stereo-selective site at the agonist binding pocket of AMPA receptors for these D-amino acids. More importantly, vesicular-released endogenous D-serine from astrocytes could potentially modulate AMPA receptors in synaptic transmission in hippocampus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/y07-040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!