Individual-based model and simulation of Plasmodium falciparum infected erythrocyte in vitro cultures.

J Theor Biol

Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Escola Superior d'Agricultura de Barcelona, Campus del Baix Llobregat, Avda. del Canal Olímpic s/n, 08029 Castelldefels, Spain.

Published: October 2007

Malaria is still one of the most fatal diseases in the world. Development of an effective treatment or vaccine requires the cultivation of the parasite that causes it: Plasmodium falciparum. Several methods for in vitro cultivation of P. falciparum infected erythrocytes have been successfully developed and described in the last 30 years. Some problems arising from the current harvests are the low parasitaemia and daily human supervision requirements. The lack of a suitable model for global culture behavior makes the assay of new methodologies a costly and tenuous task. In this paper we present a model and simulation tool for these systems. We use the INDividual DIScrete SIMulation protocol (INDISIM) to qualitatively reproduce the temporal evolution of the erythrocyte and merozoite populations. Whole system dynamics are inferred by setting the rules of behavior for each individual red blood cell, such as the nutrient uptake, metabolism and infection processes, as well as the properties and rules for the culture medium: composition, diffusion and external manipulation. We set the individual description parameters according to the values in published data, and allow population heterogeneity. Cells are arranged in a three-dimensional grid and the study is focused on the geometric constraints and physical design of experimental sets. Several published experimental cultures have been reproduced with computer simulations of this model, showing that the observed experimental behavior can be explained by means of individual interactions and statistical laws.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2007.05.030DOI Listing

Publication Analysis

Top Keywords

model simulation
8
plasmodium falciparum
8
falciparum infected
8
individual-based model
4
simulation plasmodium
4
infected erythrocyte
4
erythrocyte vitro
4
vitro cultures
4
cultures malaria
4
malaria fatal
4

Similar Publications

Hydrogen exchange mass spectrometry (HXMS) is a powerful tool to understand protein folding pathways and energetics. However, HXMS experiments to date have used exchange conditions termed EX1 or EX2 which limit the information that can be gained compared to the more general EXX exchange regime. If EXX behavior could be understood and analyzed, a single HXMS timecourse on an intact protein could fully map its folding landscape without requiring denaturation.

View Article and Find Full Text PDF

Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.

View Article and Find Full Text PDF

Improving the Effectiveness of Sample Size Re-Estimation: An Operating Characteristic Focused, Hybrid Frequentist-Bayesian Approach.

Stat Med

February 2025

Biostatistics, Innovatio Statistics Inc., Bridgewater, New Jersey, USA.

Sample size re-estimation (SSR) is perhaps the most used adaptive procedure in both frequentist and Bayesian adaptive designs for clinical trials. The primary focus of all current frequentist and Bayesian SSR procedures is type I error control. We propose a hybrid frequentist-Bayesian SSR approach that focuses on optimizing operating characteristics (OC), which uses simulations to investigate the associated OC and adjusts accordingly.

View Article and Find Full Text PDF

Advances in liver organoids: replicating hepatic complexity for toxicity assessment and disease modeling.

Stem Cell Res Ther

January 2025

Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.

The lack of in vivo accurate human liver models hinders the investigation of liver-related diseases, injuries, and drug-related toxicity, posing challenges for both basic research and clinical applications. Traditional cellular and animal models, while widely used, have significant limitations in replicating the liver's complex responses to various stressors. Liver organoids derived from human pluripotent stem cells, adult stem cells primary cells, or tissues can mimic diverse liver cell types, major physiological functions, and architectural features.

View Article and Find Full Text PDF

Corrosion inhibitors are widely used to mitigate safety risks and economic losses in engineering, yet post-adsorption processes remain underexplored. In this study, we employed density functional theory calculations with a periodic model to investigate the dissociation mechanisms of imidazole on the Fe(100) surface. Imidazole was found to adsorb optimally in a parallel orientation, with an adsorption energy of -0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!