A highly ordered large pore mesoporous silica molecular sieve SBA-3, SBA-15, Al-SBA-15, and SBA-1, were developed and characterized by XRD, BET, FTIR, SEM, and NMR-MAS. The catalytic materials were synthesized using different raw materials and operation conditions. These materials contain a regular arrangement of uniform channels with diameters between 1.8 and 10 nm, high specific surface area and high specific pore volume. The designed methods were effective for the synthesis, presenting each mesostructured materials, patterns of XRD and other characteristics corresponding to the reported ones in literature. The new route employed to synthesize Al-SBA-15, generates a catalyst with only aluminum in tetrahedral form, according to the data of (27)Al NMR-MAS. However, several reports indicated that the coordination of the Al atoms changes below the Si/Al ratio of 45, presenting peaks corresponding to penta and hexa-coordinated aluminum, which are absent in our samples (Si/Al = 50 and 33).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2007.06.033 | DOI Listing |
R Soc Open Sci
March 2018
Egyptian Petroleum Research Institute, Nasr City, P.B. 11727, Cairo, Egypt.
A series of ordered mesoporous silica such as MCM-41, SBA-3 and SBA-15, in addition to silica micro- (SM) and nano- (SN) mesoporous particles, were prepared. The preparation conditions were found to greatly influence the physical-surface properties including morphological structure, porosity, particle size, aggregate average size, surface area, pore size, pore volume and zeta potential of the prepared silica, while the chemical structure, predicted from FT-IR spectra, and the diffraction patterns, predicted from wide-angle X-ray diffraction spectra, were identical. Surface areas of approximately 1500, 1027, 600, 552 and 317 m g, pore volumes of 0.
View Article and Find Full Text PDFFood Chem
February 2017
Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de Valencia, Camino de Vera s/n, Valencia, Spain. Electronic address:
The ability of a number of mesoporous silica materials (SBA-15, SBA-3, and MCM-48) to immobilize polyphenol oxidase (PPO) at different pH has been tested. Pore size and volume are the structural characteristics with higher influence on the PPO immobilization. Mesoropous material SBA-15 adsorbs a larger quantity of PPO at pH 4.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
June 2009
Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, Berlin, Germany.
(2)H solid-state NMR measurements were performed on three samples of ruthenium nanoparticles synthesized inside two different kinds of mesoporous silica, namely SBA-3 silica materials and SBA-15 functionalized with -COOH groups and loaded with deuterium gas. The line-shape analyses of the spectra reveal the different deuteron species. In all samples a strong -OD signal is found, which shows the catalytic activity of the metal, which activates the D-D bond and deuterates the -SiOH groups through the gas phase, corroborating their usability as catalysts for hydrogenation reactions.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2007
Grupo Fisicoquímica de Nuevos Materiales, CITeQ, Facultad Córdoba, Universidad Tecnológica Nacional, Maestro López y Cruz Roja Argentina, 5016 Córdoba, Argentina.
A highly ordered large pore mesoporous silica molecular sieve SBA-3, SBA-15, Al-SBA-15, and SBA-1, were developed and characterized by XRD, BET, FTIR, SEM, and NMR-MAS. The catalytic materials were synthesized using different raw materials and operation conditions. These materials contain a regular arrangement of uniform channels with diameters between 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!