Cutaneous aging is a complex biological phenomenon, dependent not only on the innate or intrinsic process ("biological clock"), but also on extrinsic elements, primarily chronic sun exposure (photoaging). In order to verify dermal morphological changes in the elastic fiber system and collagen associated with aged skin, we performed a light and electron microscopic study on exposed-shaved albino mice, which were exposed to UVB radiation. The experimental group consisted of 48 exposed animals, randomly distributed in three groups and submitted to different radiation doses (A, 28800 J/m2; B, 57600 J/m2; and C, 86400 J/m2) and studied 0, 30, 60 and 90 days of exposure discontinuation. Nonexposed-shaved and nonexposed-nonshaved animals were included as controls. From the day of exposure discontinuation and subsequently, the elastic system and collagen network were progressively modified. The increase in collagen fibril diameter was prominent in the 60 and 90 day groups (p<0.05), as noticed on electron microscopy. Elastic fiber density also increased after irradiation (p<0.05). On electron microscopy, elastogenesis was seen in the deep dermis. The comparative study among the groups disclosed clear relationship between doses and "elastotic changes". It also showed that chronological aging of mice skin was apparently intensified after UVB exposure. Skin elastogenesis seems to be a major consequence of UVB exposure, apart from elastolysis, and occurs not only in humans but also in hairless mice submitted to continuous, long-term UVB exposure.
Download full-text PDF |
Source |
---|
ACS Biomater Sci Eng
January 2025
Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
Fracture healing is a complex process during which the bone restores its structural and mechanical integrity. Collagen networks and minerals are the fundamental components to rebuild the bone matrix in callus. It has been recognized that bone quality could be impaired during aging.
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA.
This research demonstrates a systematic curve fitting approach for acquiring parametric values of hyperelastic constitutive models for both healthy and enzymatically mediated degenerated cartilage to facilitate finite element modeling of cartilage. Several widely used phenomenological hyperelastic constitutive models were tested to adequately capture the changes in cartilage mechanics that vary with the differential/unequal abundance of matrix metalloproteinases (MMPs). Trauma and physiological conditions result in an increased production of collagenases (MMP-1) and gelatinases (MMP-9), which impacts the load-bearing ability of cartilage by significantly deteriorating its extracellular matrix (ECM).
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185, Rome, Italy.
Background: Metabolic syndrome represents a pancreatic ductal adenocarcinoma (PDAC) risk factor. Metabolic alterations favor PDAC onset, which occurs early upon dysmetabolism. Pancreatic neoplastic lesions evolve within a dense desmoplastic stroma, consisting in abundant extracellular matrix settled by cancer associated fibroblasts (CAFs).
View Article and Find Full Text PDFMethods
January 2025
Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil. Electronic address:
The cornea is the primary refracting surface of the eye, requiring precise curvature to ensure optimal vision. Any distortion in its shape may result in significant visual impairment. Corneal ectasias, such as keratoconus (KC), is characterized by gradual thinning and protrusion of the thinned area, due to biomechanical weakening of the tissue, leading to astigmatism and vision loss.
View Article and Find Full Text PDFiScience
January 2025
Abteilung Paläontologie, Bonner Institut für Organismische Biologie, Universität Bonn, 53115 Bonn, Germany.
Bone is formed by specialized cells whose activity allows bone to grow, change shape, and repair itself. Its composite structure of collagen fibrils and bioapatite nanocrystals gives bone exceptional mechanical strength. Using scanning electron microscopy, we show in fossil ichthyosaurs, 150 to 200 million years old, from the Jurassic of France and the UK, abundant and direct evidence of cellular activity on the fossilized forming, resting, and resorbing surfaces of bone trabeculae, as well as bone fibrils, Sharpey fibers, and cartilage fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!