A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endogenous cardiac stem cells. | LitMetric

Endogenous cardiac stem cells.

Prog Cardiovasc Dis

Department of Experimental Medicine, Cenci-Bolognetti Foundation, Pasteur Institute, University La Sapienza, Rome, Italy.

Published: August 2007

In the past few years it has been established that the heart contains a reservoir of stem and progenitor cells. These cells are positive for various stem/progenitor cell markers (Kit, Sca-1, Isl-1, and Side Population (SP) properties). The relationship between the various cardiac stem cells (CSC) and progenitor cells described awaits clarification. Furthermore, they may open a new therapeutic strategies of cardiac repair based on the regeneration potential of cardiac stem cells. Currently, cellular cardiomyoplasty is actively explored as means of regenerating damaged myocardium using several different cell types. CSCs seem a logical cell source to exploit for cardiac regeneration therapy. Their presence into the heart, the frequent co-expression of early cardiac progenitor transcription factors, and the capability for ex vivo and in vivo differentiation toward the cardiac lineages offer promise of enhanced cardiogenicity compared to other cell sources. CSCs, when isolated from various animal models by selection based on c-Kit, Sca-1, and/or MDR1, have shown cardiac regeneration potential in vivo following injection in the infracted myocardium. Recently, we have successfully isolated CSCs from small biopsies of human myocardium and expanded them ex vivo by many folds without losing differentiation potential into cardiomyocytes and vascular cells, bringing autologous transplantation of CSCs closer to clinical evaluation. These cells are spontaneously shed from human surgical specimens and murine heart samples in primary culture. This heterogeneous population of cells forms multi-cellular clusters, dubbed cardiospheres (CSs), in suspension culture. CSs are composed of clonally-derived cells, consist of proliferating c-Kit positive cells primarily in their core and differentiating cells expressing cardiac and endothelial cell markers on their periphery. Although the intracardiac origin of adult myocytes has been unequivocally documented, the potential of an extracardiac source of cells, able to repopulate the lost CSCs in pathological conditions (infarct) cannot be excluded and will be discussed in this review. The delivery of human CSs or of CSs-derived cells into the injured heart of the SCID mouse resulted in engraftment, migration, myocardial regeneration and improvement of left ventricular function. Our method for ex vivo expansion of resident CSCs for subsequent autologous transplantation back into the heart, may give these cell populations, the resident and the transplanted one, the combined ability to mediate myocardial regeneration to an appreciable degree, and may change the way in which cardiovascular disease will be approached in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pcad.2007.03.005DOI Listing

Publication Analysis

Top Keywords

cells
14
cardiac stem
12
stem cells
12
progenitor cells
8
cell markers
8
cardiac
8
regeneration potential
8
cardiac regeneration
8
autologous transplantation
8
myocardial regeneration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!