Accumulating evidence indicates that elevated levels of prostaglandin E(2) (PGE(2)) can increase intestinal epithelial cell proliferation, and thus play a role in colorectal tumorigenesis. PGE(2) exerts its effects through four G-protein-coupled PGE receptor (EP) subtypes, named the EP1, EP2, EP3, and EP4. Increased phosphorylation of extracellular regulated kinases (ERK1/2) is required for PGE(2) to stimulate cell proliferation of human colon cancer cells. However, the EP receptor(s) that are involved in this process remain unknown. We provide evidence that L-161,982, a selective EP4 receptor antagonist, completely blocks PGE(2)-induced ERK phosphorylation and cell proliferation of HCA-7 cells. In order to identify downstream target genes of ERK1/2 signaling, we found that PGE(2) induces expression of early growth response gene-1 (EGR-1) downstream of ERK1/2 and regulates its expression at the level of transcription. PGE(2) treatment induces phosphorylation of cyclic AMP response element binding protein (CREB) at Ser133 residue and CRE-mediated luciferase activity in HCA-7 cells. Studies with dominant-negative CREB mutant (ACREB) provide clear evidence for the involvement of CREB in PGE(2) driven egr-1 transcription in HCA-7 cells. In conclusion, this study reveals that egr-1 is a target gene of PGE(2) in HCA-7 cells and is regulated via the newly identified EP4/ERK/CREB pathway. Finally our results support the notion that antagonizing EP4 receptors may provide a novel therapeutic approach to the treatment of colon cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706013 | PMC |
http://dx.doi.org/10.1016/j.yexcr.2007.06.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!