Protein-protein interaction hotspots carved into sequences.

PLoS Comput Biol

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.

Published: July 2007

Protein-protein interactions, a key to almost any biological process, are mediated by molecular mechanisms that are not entirely clear. The study of these mechanisms often focuses on all residues at protein-protein interfaces. However, only a small subset of all interface residues is actually essential for recognition or binding. Commonly referred to as "hotspots," these essential residues are defined as residues that impede protein-protein interactions if mutated. While no in silico tool identifies hotspots in unbound chains, numerous prediction methods were designed to identify all the residues in a protein that are likely to be a part of protein-protein interfaces. These methods typically identify successfully only a small fraction of all interface residues. Here, we analyzed the hypothesis that the two subsets correspond (i.e., that in silico methods may predict few residues because they preferentially predict hotspots). We demonstrate that this is indeed the case and that we can therefore predict directly from the sequence of a single protein which residues are interaction hotspots (without knowledge of the interaction partner). Our results suggested that most protein complexes are stabilized by similar basic principles. The ability to accurately and efficiently identify hotspots from sequence enables the annotation and analysis of protein-protein interaction hotspots in entire organisms and thus may benefit function prediction and drug development. The server for prediction is available at http://www.rostlab.org/services/isis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914369PMC
http://dx.doi.org/10.1371/journal.pcbi.0030119DOI Listing

Publication Analysis

Top Keywords

interaction hotspots
12
protein-protein interaction
8
protein-protein interactions
8
residues
8
protein-protein interfaces
8
interface residues
8
protein-protein
6
hotspots
6
hotspots carved
4
carved sequences
4

Similar Publications

The self-assembled ferritin protein nanocage plays a pivotal role during oxidative stress, iron metabolism, and host-pathogen interaction by executing rapid iron uptake, oxidation and its safe-storage. Self-assembly creates a nanocompartment and various pores/channels for the uptake of charged substrates (Fe) and develops a concentration gradient across the protein shell. This phenomenon fuels rapid ferroxidase activity by an upsurge in the substrate concentration at the catalytic sites.

View Article and Find Full Text PDF

Allosteric site engagement and cooperativity mechanism by PHI1 for BRAF kinase inhibition.

Int J Biol Macromol

January 2025

School of Physics and Electronics, Shandong Normal University, Jinan 250014, China. Electronic address:

With the ability to reveal allosteric sites, Ponatinib and Ponatinib Hybrid Inhibitor 1 (PHI1) are novel inhibitors of BRAF, a potent oncogene that activates the MAPK pathway. PHI1 also exhibits unique positive cooperativity, with enhanced inhibition on the other monomer when one monomer of the BRAF dimer bound to an inhibitor. The abovementioned properties lack rigorous theoretical verification, so this study compared the interaction mechanisms of four inhibitor types and explored the source of the cooperativity of PHI1 via various computational methods.

View Article and Find Full Text PDF
Article Synopsis
  • RbpA is a critical protein for Mycobacterium tuberculosis growth, impacting transcription and antibiotic response, but its regulatory mechanisms are not fully understood.
  • Significant structural changes in RNA polymerase occur when it interacts with RbpA, revealing important amino acids for transcription regulation and dynamic behavior of the complex.
  • The study identifies potential ligands for RbpA's interaction site, laying the groundwork for future research on developing inhibitors that target RbpA's regulatory role in transcription.
View Article and Find Full Text PDF

Putting one health to the test: Operational challenges and critical reflections from the global South.

One Health

June 2025

Centre for Policy Design, Ashoka Trust for Research in Ecology and the Environment, Bengaluru, India & School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.

One Health as a policy framework to tackle zoonoses has gained wide-ranging validation with multiple international organizations throwing their collective might behind it. Such endorsement has convinced several governments to adopt One Health as a national strategy to address zoonoses. Although some argue that One Health is so many things that there are in fact multiple 'One Healths', others find that most international policy documents that use the One Health framing contain certain key recommendations, with intersectoral coordination and disease surveillance prominent among them.

View Article and Find Full Text PDF

Micromirror technology is one of the current research hotspots. In this work, what we believe to be a novel electrostatic 2-DOF micromirror structure with double-biased torsional axes is proposed. By introducing internal resonance, synchronous motions of the two axes with a locked frequency ratio under a single driving force were achieved within a wide frequency range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!