The kinetics of the reactions of three porphyrin-iron(IV)-oxo derivatives with alkenes and benzylic alcohols were measured. The iron-oxo systems studied were 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin-iron(IV)-oxo (2a), 5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrin-iron(IV)-oxo (2b), and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin-iron(IV)-oxo (2c). Species 2 were stable for hours at room temperature as dilute solutions in acetonitrile and reacted hundreds to thousands of times faster in the presence of high concentrations of substrates. Typical second-order rate constants determined from pseudo-first-order kinetic studies are 1-2 x 10(-2) M(-1) s(-1) for reactions with styrene and 3 x 10(-2) M(-1) s(-1) for reactions with benzyl alcohol. The reactivity order for the iron-oxo species was 2a > 2b > 2c, which is inverted from that expected on the basis of the electron demand of the porphyrin macrocycles, and the oxidation reaction was suppressed when excess porphyrin-iron(III) complex was added to reaction mixtures. These observations indicate that the reactions involve disproportionation of the iron(IV)-oxo species 2 to give an iron(III) species and a more highly oxidized iron species, presumed to be an iron(IV)-oxo porphyrin radical cation, that is the true oxidant in the reactions. Analyses of the kinetics of oxidations of a series of para-substituted benzylic alcohols with Hammett sigma+ -substituent constants and with a dual-parameter method developed by Jiang (Jiang, X. K. Acc. Chem. Res. 1997, 30, 283) indicated that considerable positive charge developed on the benzylic carbons in the oxidation reactions, as expected for electrophilic oxidants, and also that substantial radical character developed on the benzyl carbon in the transition states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907147PMC
http://dx.doi.org/10.1021/ic700395jDOI Listing

Publication Analysis

Top Keywords

oxidation reactions
8
benzylic alcohols
8
10-2 m-1
8
m-1 s-1
8
s-1 reactions
8
reactions
7
species
5
kinetics mechanism
4
mechanism oxidation
4
reactions porphyrin-ironiv-oxo
4

Similar Publications

Transient methods for understanding the properties of strongly oxidizing radicals.

Chem Commun (Camb)

January 2025

Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.

This review discusses the properties of strongly oxidizing radicals in organic and aqueous media and highlights the challenges in obtaining accurate values of their reduction potentials. Transient redox equilibrium methods based on the use of strong photooxidants or initiated by pulse radiolysis are shown to provide versatile approaches for decoupling electron transfer reactions from follow-up reactivity of unstable radical species, resulting in accurate values of reduction potentials of very positive couples, including some solvent radical cations. We also show that correlations of reduction potentials with Hammett ∑+p parameters, as well as gas phase ionization potentials, can be used to estimate the redox properties of unknown couples within a homologous series of compounds.

View Article and Find Full Text PDF

Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer.

Nano Converg

January 2025

Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeolabuk-do, 56212, Republic of Korea.

Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of AlO-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor.

View Article and Find Full Text PDF

Unique hierarchical NiFe-LDH/Ni/NiCoS heterostructure arrays on nickel foam for the improvement of overall water splitting activity.

Nanoscale

January 2025

Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.

The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCoS/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCoS nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCoS nanoneedles during water electrolysis.

View Article and Find Full Text PDF

Organophotoredox-Driven Three-Component Synthesis of β-Trifluoromethyl β-Amino Ketones†.

J Org Chem

January 2025

Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.

In this work, we present a photoredox three-component reaction that enables the synthesis of medicinally relevant β-trifluoromethyl β-amino ketones from a -trifluoroethylhydroxylamine derivative, styrenes and DMSO. Remarkably, fluoromethyl, difluoromethyl and pentafluoroethyl analogues are also accessed using the same reaction conditions. The mechanistic investigations, including radical trapping experiments, cyclic voltammetry, Stern-Volmer quenching studies and isotope labelling experiments support the photoinduced radical/polar crossover and Kornblum-type oxidation mechanisms.

View Article and Find Full Text PDF

An OER catalyst showing both high activity and stability in promoting oxygen evolution is important for its practical application in electrochemical water-splitting. Here, we report the screening of such a catalyst by optimizing the Ni(II)-doping in Co(III)-based layered double hydroxides (LDHs). Such LDH samples tailored with Ni(II)-doping are prepared by an oxidative intercalation reaction where brucite-like Ni(II)Co(II)(OH) (0 ≤ ≤ 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!