In this study, data for human dermal absorption of octamethylcyclotetrasiloxane, D(4), and decamethylcyclopentasiloxane, D(5), through axilla skin in vivo are interpreted using pharmacokinetic models of dermal absorption by adding the dermal exposure route to inhalation physiologically based pharmacokinetics models developed previously. The compartmental model describing dermal absorption of these compounds included volatilization of the applied chemical from the skin surface, diffusion of absorbed chemical back to the skin surface and evaporation of this chemical from the skin surface after the applied dose had cleared from the application site, uptake from the skin compartment into blood, and a storage compartment within the skin. Data from exposures in volunteers (i.e., D(4) and D(5) concentrations in exhaled air and plasma) were used to estimate model parameters. In volunteers exposed to either D(4) or D(5), the maximum concentration of chemical in exhaled air reached a maximum at or prior to 1 h following administration of the test chemical. Based on model calculations, the percent of applied dose of D(4) that was absorbed into systemic circulation for men and women was 0.12 and 0.30%, respectively; for D(5) about 0.05% of the applied dose was absorbed for both men and women. For both D(4) and D(5), model calculations indicate that more than 83% of the chemical that reached systemic circulation was eliminated by exhalation within 24 h. These whole-body pharmacokinetic models for dermal absorption of two semi-volatile compounds provide a valuable tool for understanding factors controlling their dermal absorption through axilla skin and for applying results from these studies in consumer product risk assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfm174DOI Listing

Publication Analysis

Top Keywords

dermal absorption
24
chemical skin
12
skin surface
12
applied dose
12
human dermal
8
absorption octamethylcyclotetrasiloxane
8
octamethylcyclotetrasiloxane decamethylcyclopentasiloxane
8
axilla skin
8
pharmacokinetic models
8
models dermal
8

Similar Publications

Ameliorative role of bioactive compounds against lead-induced neurotoxicity.

Neuroscience

January 2025

Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:

Lead (Pb) is an environmental toxin ubiquitously present in the human environment due to anthropogenic activities and industrialization. Lead can enter the human body through various sources and pathways, such as inhalation, ingestion and dermal contact, leading to detrimental health effects. The majority of lead that enters the body is removed by urine or feces; however, under chronic exposure conditions, lead is not efficient, as lead is absorbed and transferred to numerous organs, such as the brain, liver, kidney, muscles, and heart, and it is ultimately stored in mineralizing tissues such as bones and teeth.

View Article and Find Full Text PDF

Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation.

View Article and Find Full Text PDF

Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery.

AAPS PharmSciTech

January 2025

Consulting, Fort Collins, Colorado, USA.

Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity.

View Article and Find Full Text PDF

Cyclovirobuxine D, a natural compound derived from the medicinal plant Buxus sinica, demonstrates a diverse array of therapeutic benefits, encompassing anti-arrhythmic properties, blood pressure regulation, neuronal protection, and anti-ischemic activity. However, its limited solubility hinders the bioavailability of current oral and injectable formulations, causing considerable adverse reactions and toxicity. In this investigation, we embarked on an unprecedented exploration of the skin penetration potential of cyclovirobuxine D utilizing chemical penetration enhancers and niosomes as innovative strategies to enhance its dermal absorption.

View Article and Find Full Text PDF

The limited water solubility of active compounds remains a significant challenge for efficient dermal drug delivery, particularly for BCS class IV drugs such as curcumin. This study aimed to enhance curcumin's dermal penetration using two strategies: extracellular vesicles (EVs) and plantCrystals derived from soybeans. EVs were isolated using classical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!