On the stationary state of a network of inhibitory spiking neurons.

J Comput Neurosci

Institute of Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, Würzburg, Germany.

Published: February 2008

The background activity of a cortical neural network is modeled by a homogeneous integrate-and-fire network with unreliable inhibitory synapses. For the case of fast synapses, numerical and analytical calculations show that the network relaxes into a stationary state of high attention. The majority of the neurons has a membrane potential just below the threshold; as a consequence the network can react immediately - on the time scale of synaptic transmission- on external pulses. The neurons fire with a low rate and with a broad distribution of interspike intervals. Firing events of the total network are correlated over short time periods. The firing rate increases linearly with external stimuli. In the limit of infinitely large networks, the synaptic noise decreases to zero. Nevertheless, the distribution of interspike intervals remains broad.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10827-007-0049-3DOI Listing

Publication Analysis

Top Keywords

stationary state
8
distribution interspike
8
interspike intervals
8
network
6
state network
4
network inhibitory
4
inhibitory spiking
4
spiking neurons
4
neurons background
4
background activity
4

Similar Publications

Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highest comfortable level of the listener, while noise reduction reduces ambient noise with the goal of improving intelligibility and listening comfort and reducing effort. In most current hearing aids, noise reduction and WDRC are implemented sequentially, but this may lead to distortion of the amplitude modulation patterns of both the speech and the noise.

View Article and Find Full Text PDF

Utilizing 4-Sulfonylcalix[4]arene as a Selective Mobile Phase Additive for the Capture of Methylated Peptides.

Anal Chem

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China.

Protein methylation has attracted increasing attention due to its significant regulatory roles in various biological processes. However, the diversity of methylation forms, subtle differences between methylated and nonmodified sites, and their ultralow abundances pose substantial challenges for capturing and isolating methylated peptides from biological samples. Herein, we develop a chromatographic method that utilizes 4-sulfonylcalix[4]arene (SC4A) as a mobile phase additive and Click-Maltose as the stationary phase to separate methylated/nonmethylated peptides through the adsorption of the SC4A-(Me3) complex.

View Article and Find Full Text PDF

Carbon monoxide (CO) oxidising microorganisms are present in volcanic deposits throughout succession, with levels of vegetation and soil influencing the communities present. Carboxydovores are a subset of CO oxidisers that use CO as an energy source, which raises questions about the physiological and metabolic features that make them more competitive in harsh volcanic ecosystems. To address these questions, samples were taken from volcanic strata formed by eruptions from Calbuco Volcano (Chile) in 2015 (tephra) and 1917 (soil).

View Article and Find Full Text PDF

Development of a Combined 2D-MGD TLC/HPTLC Method for the Separation of Terpinen-4-ol and α-Terpineol from Tea Tree, , Essential Oil.

Biomolecules

January 2025

United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA.

Tea tree oil (TTO), acquired from (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. However, in some instances, the cost and time of analysis may pose a challenge.

View Article and Find Full Text PDF

Inertial Memory Effects in Molecular Transport Across Nanoporous Membranes.

Membranes (Basel)

January 2025

Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia.

Nanoporous membranes are heterogeneous structures, with heterogeneity manifesting at the microscale. In examining particle transport through such media, it has been observed that this transport deviates from classical diffusion, as described by Fick's second law. Moreover, the classical model is physically unsustainable, as it is non-causal and predicts an infinite speed of concentration perturbation propagation through a substantial medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!