Development and neuromodulation of spinal locomotor networks in the metamorphosing frog.

J Physiol Paris

Université Bordeaux 1, CNRS, Bordeaux, Laboratoire Mouvement Adaptation Cognition, UMR 5227, Bâtiment 2A, 146 rue Léo Saignat, F-33076 Bordeaux, France.

Published: January 2008

AI Article Synopsis

  • The metamorphosis of Xenopus laevis frogs entails significant changes in their anatomy and physiology, particularly affecting their breathing, locomotion, and diet as they transition from tadpoles to adults.* -
  • During this process, both larval and adult movement systems exist simultaneously, indicating a dynamic evolution in the frog's spinal circuitry as it adapts to new limbs and the loss of its tail.* -
  • Research shows that neurotransmitters like serotonin and noradrenaline influence the coordination of movement systems during metamorphosis, with serotonin helping to synchronize movements and noradrenaline working to separate them, alongside the emergence of nitric oxide-producing neurons essential for spinal cord maturation.*

Article Abstract

Metamorphosis in the anuran frog, Xenopus laevis, involves profound structural and functional transformations in most of the organism's physiological systems as it encounters a complete alteration in body plan, habitat, mode of respiration and diet. The metamorphic process also involves a transition in locomotory strategy from axial-based undulatory swimming using alternating contractions of left and right trunk muscles, to bilaterally-synchronous kicking of the newly developed hindlimbs in the young adult. At critical stages during this behavioural switch, functional larval and adult locomotor systems co-exist in the same animal, implying a progressive and dynamic reconfiguration of underlying spinal circuitry and neuronal properties as limbs are added and the tail regresses. To elucidate the neurobiological basis of this developmental process, we use electrophysiological, pharmacological and neuroanatomical approaches to study isolated in vitro brain stem/spinal cord preparations at different metamorphic stages. Our data show that the emergence of secondary limb motor circuitry, as it supersedes the primary larval network, spans a developmental period when limb circuitry is present but not functional, functional but co-opted into the axial network, functionally separable from the axial network, and ultimately alone after axial circuitry disappears with tail resorption. Furthermore, recent experiments on spontaneously active in vitro preparations from intermediate metamorphic stage animals have revealed that the biogenic amines serotonin (5-HT) and noradrenaline (NA) exert short-term adaptive control over circuit activity and inter-network coordination: whereas bath-applied 5-HT couples axial and appendicular rhythms into a single unified pattern, NA has an opposite decoupling effect. Moreover, the progressive and region-specific appearance of spinal cord neurons that contain another neuromodulator, nitric oxide (NO), suggests it plays a role in the maturation of limb locomotor circuitry. In summary, during Xenopus metamorphosis the network responsible for limb movements is progressively segregated from an axial precursor, and supra- and intra-spinal modulatory inputs are likely to play crucial roles in both its functional flexibility and maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphysparis.2007.05.009DOI Listing

Publication Analysis

Top Keywords

axial network
8
functional
5
circuitry
5
axial
5
development neuromodulation
4
neuromodulation spinal
4
spinal locomotor
4
locomotor networks
4
networks metamorphosing
4
metamorphosing frog
4

Similar Publications

In Vivo Neurodynamics Mapping via High-Speed Two-Photon Fluorescence Lifetime Volumetric Projection Microscopy.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Monitoring the morphological and biochemical information of neurons and glial cells at high temporal resolution in three-dimensional (3D) volumes of in vivo is pivotal for understanding their structure and function, and quantifying the brain microenvironment. Conventional two-photon fluorescence lifetime volumetric imaging speed faces the acquisition speed challenges of slow serial focal tomographic scanning, complex post-processing procedures for lifetime images, and inherent trade-offs among contrast, signal-to-noise ratio, and speed. This study presents a two-photon fluorescence lifetime volumetric projection microscopy using an axially elongated Bessel focus and instant frequency-domain fluorescence lifetime technique, and integrating with a convolutional network to enhance the imaging speed for in vivo neurodynamics mapping.

View Article and Find Full Text PDF

The crystal structure of the title compound, hexa-aqua-nickel(II) dichloride-1,4,7,10,13,16-hexa-oxa-cyclo-octa-deca-ne-water (1/2/2), [Ni(HO)]Cl·2CHO·2HO, is reported. The asymmetric unit contains half of the Ni(OH) moiety with a formula of CHClNiO at 105 K and triclinic (1) symmetry. The [Ni(OH)] cation has close to ideal octa-hedral geometry with O-Ni-O bond angles that are within 3° of idealized values.

View Article and Find Full Text PDF

3D MFA: An automated 3D Multi-Feature Attention based approach for spine segmentation using a multi-stage network pruning.

Comput Biol Med

December 2024

Department of Mathematics, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Center for Artificial Intelligence (CAI), King Khalid University, Abha, 61421, Saudi Arabia.

Spine segmentation poses significant challenges due to the complex anatomical structure of the spine and the variability in imaging modalities, which often results in unclear boundaries and overlaps with surrounding tissues. In this research, a novel 3D Multi-Feature Attention (MFA) model is proposed for spine segmentation. The standard MobileNetv3 is modified by adding the RCBAM (Reverse Convolution Block Attention Module) module, and FPP (Feature Pyramid Pooling) for feature enhancement.

View Article and Find Full Text PDF

Protogenin facilitates trunk-to-tail HOX code transition via modulating GDF11/SMAD2 signaling in mammalian embryos.

Commun Biol

December 2024

Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).

During embryogenesis, vertebral axial patterning is intricately regulated by multiple signaling networks. This study elucidates the role of protogenin (Prtg), an immunoglobulin superfamily member, in vertebral patterning control. Prtg knockout (Prtg) mice manifest anterior homeotic transformations in their vertebral columns and significant alterations in homeobox (Hox) gene expression.

View Article and Find Full Text PDF

Background: Dixon-based magnetic resonance imaging (MRI) intramuscular proton density fat fraction (PDFF) is a potentially useful imaging biomarker of muscle quality. However, multi-vendor, multi-site reproducibility of intramuscular PDFF quantification, required for large clinical studies, can be strongly dependent on acquisition and processing. The purpose of this study was (I) to develop a 6-point Dixon MRI-based acquisition and processing technique for reproducible multi-vendor, multi-site quantification of thigh intramuscular PDFF; and (II) to evaluate the ability of the technique to detect differences in thigh muscle status between operated .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: