Simultaneous electrophysiology and confocal microscopy were used to investigate purinergic neurotransmission at single smooth muscle cells (SMCs) in mouse isolated vas deferens, and to explore the relationship between two high-resolution P2X-receptor-mediated measures of per pulse ATP release: transient peaks in the first time derivative of the rising phase of excitatory junction potentials (EJPs) recorded in single SMCs ('discrete events'; DEs) and neuroeffector Ca(2+) transients (NCTs) in the impaled SMCs. This study shows that discrete events represent neurotransmitter release onto the impaled cell. First, the median amplitude of the first derivative of the EJP was larger when there was a coincident NCT in the impaled cell, compared with instances when no coincident NCT occurred. Second, the time-to-peak amplitude of the first derivative was shorter if there was a coincident NCT in the impaled cell, compared with when no coincident NCT was observed within the field. Surprisingly, first derivative amplitude increased with the distance (of the corresponding NCT) from the microelectrode. The microelectrode did not locally inhibit the functional quantal size as there was no effect of distance on the normalized NCT amplitude. When the significant effect of distance (between the microelectrode and NCTs) on the first derivative amplitude was removed, there was no correlation between the unstandardized residual (of distance vs. first derivative amplitude) and NCT amplitude. The absence of a correlation between DE and NCT amplitudes suggests that the NCT amplitude is a poor measure of quantal size. The usefulness of NCTs hence lies primarily in locating neurotransmitter release and measuring changes in local release probability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151008 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2007.05.044 | DOI Listing |
EMBO J
August 2024
The Solomon Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
Nuclear exclusion of the RNA- and DNA-binding protein TDP-43 can induce neurodegeneration in different diseases. Diverse processes have been implicated to influence TDP-43 mislocalization, including disrupted nucleocytoplasmic transport (NCT); however, the physiological pathways that normally ensure TDP-43 nuclear localization are unclear. The six-transmembrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) cleaves the glycosylphosphatidylinositol (GPI) anchor that tethers some proteins to the membrane.
View Article and Find Full Text PDFMol Oncol
May 2024
Division of Episomal-persistent DNA in Cancer- and Chronic Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Bovine milk and meat factors (BMMFs) are plasmid-like DNA molecules isolated from bovine milk and serum, as well as the peritumor of colorectal cancer (CRC) patients. BMMFs have been proposed as zoonotic infectious agents and drivers of indirect carcinogenesis of CRC, inducing chronic tissue inflammation, radical formation and increased levels of DNA damage. Data on expression of BMMFs in large clinical cohorts to test an association with co-markers and clinical parameters were not previously available and were therefore assessed in this study.
View Article and Find Full Text PDFHaematologica
August 2022
Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Molecular Hematology/Oncology, Department of Internal Medicine V, Heidelberg University Hospital, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
The outcomes of patients with multiple myeloma (MM) refractory to immunomodulatory agents (IMiDs) and proteasome inhibitors (PIs) remain poor. In this study, we performed whole genome and transcriptome sequencing of 39 heavily pretreated relapsed/refractory MM (RRMM) patients to identify mechanisms of resistance and potential therapeutic targets. We observed a high mutational load and indications of increased genomic instability.
View Article and Find Full Text PDFCell Death Discov
November 2021
Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul, 152-703, Republic of Korea.
N-terminal HSP90 inhibitors in development have had issues arising from heat shock response (HSR) induction and off-target effects. We sought to investigate the capacity of NCT-58, a rationally-synthesized C-terminal HSP90 inhibitor, to kill trastuzumab-resistant HER2-positive breast cancer stem-like cells. NCT-58 does not induce the HSR due to its targeting of the C-terminal region and elicits anti-tumor activity via the simultaneous downregulation of HER family members as well as inhibition of Akt phosphorylation.
View Article and Find Full Text PDFLeukemia
December 2020
Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
Acute myeloid leukemia (AML) is an aggressive disease for which only few targeted therapies are available. Using high-throughput RNA interference (RNAi) screening in AML cell lines, we identified LIM kinase 1 (LIMK1) as a potential novel target for AML treatment. High LIMK1 expression was significantly correlated with shorter survival of AML patients and coincided with FLT3 mutations, KMT2A rearrangements, and elevated HOX gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!