Unilateral sensory stimulation reliably elicits contralateral somatotopic activation of primary (SI) and secondary (SII) somatosensory cortex. There is an ongoing debate about the occurrence and nature of concomitant ipsilateral SI and SII activation. Here we used functional magnetic resonance imaging (fMRI) in healthy human subjects with unilateral tactile stimulation of fingers and lips, to compare somatosensory activation patterns from distal and proximal body parts. We hypothesized that fMRI in humans should reflect the functional connectivity of somatosensory cortex as predicted by animal studies. We show that both unilateral finger and lip stimulations activate contra- and ipsilateral SI and SII cortices with high detection frequency. Correlations of BOLD-signals to the applied hemodynamic reference function were significantly higher in contralateral as compared to ipsilateral SI and SII cortices for both finger and lip stimulation, reflecting strong contribution of contralateral thalamocortical input. Furthermore, BOLD-signal correlations were higher in SI than in SII activations on the contralateral but not on the ipsilateral side. While these asymmetries within and across hemispheres were consistent for finger and lip stimulations, indicating analogous underlying organizing principles, they were less prominent for lip stimulation. Somatotopic organization was detected in SI but not in SII representations of fingers and lips. These results qualitatively and quantitatively support the prevalent concepts of anatomical and functional connectivity in the somatosensory system and therefore may allow interpretation of sensory evoked fMRI signals in terms of normal human brain function. Thus, the assessment of human somatosensory function with fMRI may permit in the future investigations of pathological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2007.05.038 | DOI Listing |
Sci Rep
December 2024
Health and Sports Medicine Department, Faculty of Sports Sciences and Health, University of Tehran, North Karegar St, P.O.B: 1439813117, Tehran, Iran.
Although the connection between muscular strength and flatfoot condition is well-established, the impact of corrective exercises on these muscles remains inadequately explored. This study aimed to assess the impact of intrinsic- versus extrinsic-first corrective exercise programs on muscle morphometry and navicular drop in boys with flexible flatfoot. Twenty-five boys aged 10-12 with flexible flatfoot participated, undergoing a 12-week corrective exercise program, with a shift in focus at six weeks.
View Article and Find Full Text PDFSci Rep
December 2024
School of Public Health, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
The study aims to address the critical issue of toxic side effects resulting from drug combinations, which can significantly increase health risks, clinical complications, and lead to drug being withdrawn from the market. A model named TSEDDI (toxic side effects of drug-drug interaction) has been developed to improve the identification of drug pairs that may induce toxicity or adverse reactions. By utilizing drug chemical structures and diverse proteins, we employ a convolutional neural network (CNN) to extract features from molecular images, enzyme proteins, transporter proteins, and target proteins.
View Article and Find Full Text PDFSci Rep
December 2024
Programa de Pós-Graduação em Ecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, Brazil.
The negative effects of land-use changes on biodiversity significantly contribute to climate change. Primates are among the animals most affected by these changes, because of their high dependence on forest cover where a lack of forest connectivity can limit their dispersal and segregate their populations. In this sense, protected areas (PAs) are crucial for conserving endangered primates, especially endemic species.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
Chronic ischemia in moyamoya disease (MMD) impaired white matter microstructure and neural functional network. However, the coupling between cerebral blood flow (CBF) and functional connectivity and the association between structural and functional network are largely unknown. 38 MMD patients and 20 sex/age-matched healthy controls (HC) were included for T1-weighted imaging, arterial spin labeling imaging, resting-state functional MRI and diffusion tensor imaging.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia.
Agriculture 4.0 technologies continue to see low adoption among small and medium-sized farmers, primarily because these solutions often fail to account for the specific challenges of rural areas. In this work, we propose and implement a design methodology to develop a Precision Agriculture solution aimed at assisting farmers in managing water stress in Hass avocado crops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!