The effects of isotocin (IT) and vasotocin (VT), which are fish analogues of mammalian oxytocin and vasopressin respectively, were examined in the isolated upper esophageal sphincter (UES) muscle. IT relaxed and VT constricted the UES muscle in a concentration-dependent manner. The relaxation by IT and the contraction by VT were completely blocked by H-9405 (an oxytocin receptor antagonist) and by H-5350 (a V(1)-receptor antagonist), respectively, suggesting that the eel UES possesses both IT and VT receptors. Truncated fragments of VT did not show any significant effects, indicating that all nine residues are essential for the VT and IT actions. IT may relax the UES muscle through enhancing cAMP production, since similar relaxation was also observed after treatment with 3-isobutyl-1-methylxantine, forskolin and 8-bromoadenosine, 3', 5'-cyclic mono-phosphate (8BrcAMP). Although 8-bromoguanosine, 3', 5'-cyclic monophosphate also relaxed the UES, its effect was less than 1/3 of that 8BrcAMP, suggesting minor contribution of nitric oxide (NO) in the relaxation of the UES muscle. Both peptides seem to act directly on the UES muscle, not through release of other substances from the epithelial cells, since similar relaxation and contraction were observed even in the scraped UES preparations. When IT and VT were intravenously administrated (in vivo experiments), the drinking rate of the seawater eel was enhanced by IT and was inhibited by VT. These effects correspond to the in vitro results described above, relaxation by IT and contraction by VT in the UES muscle. The significance of the relaxing effect by IT is discussed with respect to controlling the drinking behavior of the eel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-007-0184-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!