With the rapid increment of protein sequence data, it is indispensable to develop automated and reliable predictive methods for protein function annotation. One approach for facilitating protein function prediction is to classify proteins into functional families from primary sequence. Being the most important group of all proteins, the accurate prediction for enzyme family classes and subfamily classes is closely related to their biological functions. In this paper, for the prediction of enzyme subfamily classes, the Chou's amphiphilic pseudo-amino acid composition [Chou, K.C., 2005. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21, 10-19] has been adopted to represent the protein samples for training the 'one-versus-rest' support vector machine. As a demonstration, the jackknife test was performed on the dataset that contains 2640 oxidoreductase sequences classified into 16 subfamily classes [Chou, K.C., Elrod, D.W., 2003. Prediction of enzyme family classes. J. Proteome Res. 2, 183-190]. The overall accuracy thus obtained was 80.87%. The significant enhancement in the accuracy indicates that the current method might play a complementary role to the exiting methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2007.06.001 | DOI Listing |
Mol Biol Evol
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
Nucleotide-binding leucine-rich repeat receptor (NLR) genes encode a pivotal class of plant immune receptors. However, their rampant duplication and loss have made inferring their genomic evolutionary trajectory difficult, exemplified by the loss of TNL family genes in monocots. In this study, we introduce a novel classification system for angiosperm NLR genes, grounded in network analysis of micro-synteny information.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
Background: Type 2 diabetes (T2D) has been linked to changes in DNA methylation levels, which can, in turn, alter transcriptional activity. However, most studies for epigenome-wide associations between T2D and DNA methylation comes from cross-sectional design. Few large-scale investigations have explored these associations longitudinally over multiple time-points.
View Article and Find Full Text PDFChemMedChem
January 2025
CBS: Centre de Biologie Structurale, ABCIS, 29 rue de Navacelles, 34090, Montpellier, FRANCE.
Aminoglycoside-phosphotransferases (APHs) are a class of bacterial enzymes that mediate acquired resistance to aminoglycoside antibiotics. Here we report the identification of small molecules counteracting aminoglycoside resistance in Enterococcus casseliflavus. Molecular dynamics simulations were performed to identify an allosteric pocket in three APH enzymes belonging to 3' and 2'' subfamilies in which we then screened, in silico, 12,000 small molecules.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil.
The global increase in cancer cases and mortality has been associated with inflammatory processes, in which chemokines play crucial roles. These molecules, a subfamily of cytokines, are essential for the migration, adhesion, interaction, and positioning of immune cells throughout the body. Chemokines primarily originate in response to pathogenic stimuli and inflammatory cytokines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!