Unlabelled: Continuous positive airway pressure (CPAP) is frequently used in patients attending emergency units. Its combination with nebulization is sometimes necessary in those patients presenting with a CPAP dependency.
Study Objective: To compare lung deposition of amikacin delivered by a classical jet nebulizer (SideStream; Medic-Aid; West Sussex, UK) used alone (SST) or coupled to a CPAP device (Boussignac; Vygon; Belgium).
Method: Amikacin (1g) was nebulized with both devices in six healthy subjects during 5 min on spontaneous breathing. A 1-week wash-out period between each nebulization was applied. Lung deposition was indirectly assessed by urinary monitoring of excreted amount of amikacin.
Results: Total daily amount of amikacin excreted in the urine was significantly lower with CPAP than with SST (1.97% initial dose versus 4.88% initial dose, p<0.001) with a corresponding mean ratio CPAP/SST of 0.41. The residual amount of amikacin in the nebulizer was higher with CPAP than with SST (607 mg versus 541 mg) but the difference was not significant (p=0.35).
Conclusion: These data suggest that the amount of amikacin delivered to healthy lungs is 2.5-fold lower with CPAP than with SST for the same nebulization time and that the nebulization time when using CPAP should be increased to reach the same amount of drug delivered with a classical jet nebulizer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rmed.2007.06.003 | DOI Listing |
Shock
January 2025
The University of Alabama, Birmingham, Department of Surgery and Center for Injury Science, Division of Trauma and Acute Care Surgery, Birmingham, AL.
Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.
View Article and Find Full Text PDFProteomes
January 2025
Research & Development, AbbVie Bioresearch Center, Worcester, MA 01605, USA.
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions.
View Article and Find Full Text PDFRespir Res
January 2025
Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.
Progressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD).
View Article and Find Full Text PDFEMBO Mol Med
January 2025
Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Host metabolic fitness is a critical determinant of infectious disease outcomes. Obesity, aging, and other related metabolic disorders are recognized as high-risk disease modifiers for respiratory infections, including coronavirus infections, though the underlying mechanisms remain unknown. Our study highlights fatty acid-binding protein 4 (FABP4), a key regulator of metabolic dysfunction and inflammation, as a modulator of SARS-CoV-2 pathogenesis, correlating strongly with disease severity in COVID-19 patients.
View Article and Find Full Text PDFPhys Med
January 2025
Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia.
Purpose: To propose comprehensive characterization methods of additive manufacturing (AM) materials for MV photon and MeV electron radiotherapy.
Methodology: This study investigated 15 AM materials using CT machines. Geometrical accuracy, tissue-equivalence, uniformity, and fabrication parameters were considered.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!