Background: Topical treatment of nail diseases is hampered by the nail plate barrier, consisting of dense cross-linked keratin fibres held together by cysteine-rich proteins and disulphide bonds, which prevents penetration of antifungal agents to the focus of fungal infection. Acidified nitrite is an effective treatment for tinea pedis. It releases nitric oxide (NO) and other NO-related species. NO can react with thiol (-SH) groups to form nitrosothiols (-SNO).

Objectives: To determine whether acidified nitrite can penetrate the nail barrier and cure onychomycosis, and to determine whether nitrosospecies can bind to the nail plate.

Methods: Nails were treated with a mixture of citric acid and sodium nitrite in a molar ratio of 0.54 at either low dose (0.75%/0.5%) or high dose (13.5%/9%). Immunohistochemistry, ultraviolet-visible absorbance spectroscopy and serial chemical reduction of nitrosospecies followed by chemiluminescent detection of NO were used to measure nitrosospecies. Acidified nitrite-treated nails and the nitrosothiols S-nitrosopenicillamine (SNAP) and S-nitrosoglutathione (GSNO) were added to Trichophyton rubrum and T. mentagrophytes cultures in liquid Sabouraud medium and growth measured 3 days later. Thirteen patients with positive mycological cultures for Trichophyton or Fusarium species were treated with topical acidified nitrite for 16 weeks. Repeat mycological examination was performed during this treatment time.

Results: S-nitrothiols were formed in the nail following a single treatment of low- or high-dose sodium nitrite and citric acid. Repeated exposure to high-dose acidified nitrite led to additional formation of N-nitrosated species. S-nitrosothiol formation caused the nail to become antifungal to T. rubrum and T. mentagrophytes. Antifungal activity was Cu(2+) sensitive. The nitrosothiols SNAP and GSNO were also found to be antifungal. Topical acidified nitrite treatment of patients with onychomycosis resulted in > 90% becoming culture negative for T. rubrum.

Conclusions: Acidified nitrite cream results in the formation of S-nitrosocysteine throughout the treated nail. Acidified nitrite treatment makes a nail antifungal. S-nitrosothiols, formed by nitrosation of nail sulphur residues, are the active component. Acidified nitrite exploits the nature of the nail barrier and utilizes it as a means of delivery of NO/nitrosothiol-mediated antifungal activity. Thus the principal obstacle to therapy in the nail becomes an effective delivery mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2133.2007.08063.xDOI Listing

Publication Analysis

Top Keywords

acidified nitrite
36
nail
13
nitrite
11
acidified
10
nail plate
8
treatment nail
8
nail barrier
8
citric acid
8
sodium nitrite
8
rubrum mentagrophytes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!