The aggregation of tau protein into paired helical filaments is one of the hallmarks of Alzheimer's disease and related dementias. We therefore continue our search for non-toxic, cell penetrating inhibitors of tau aggregation, which hold potential for brain penetration. Pickhardt et al. (2005) have reported a high throughput screen for tau aggregation inhibitors previously, which resulted in the identification of several hit classes. Here we report the identification of novel inhibitors which were not present in the initial high throughput assay. This was achieved by transformation of the high throughput screen data into the 3D relationships of virtual pharmacophores The pharmacophore models were utilized in a virtual screen of a Maybridge database. The virtual screen provided 136 hits; 19 representative hits were selected and assayed, this resulted in two novel leads with an IC(50) < 13 microM. These two leads feature a novel scaffold for tau aggregation inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.2174/156720507781077250DOI Listing

Publication Analysis

Top Keywords

tau aggregation
12
high throughput
12
inhibitors tau
8
tau protein
8
paired helical
8
helical filaments
8
throughput screen
8
aggregation inhibitors
8
virtual screen
8
tau
5

Similar Publications

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Controlins I-X, Resin Glycosides from the Seeds of and Their Biological Activities.

J Nat Prod

January 2025

School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, People's Republic of China.

Ten new resin glycosides, controlins I-X (-), were isolated from the seeds of . Their structures were established by spectroscopic analysis as well as by chemical means. Compounds were identified as glycosidic acid methyl esters, considered as artifacts generated via transesterification with MeOH from natural resin glycosides.

View Article and Find Full Text PDF

Sensitive detection and propagation of brain-derived tau assemblies in HEK293 based wild-type tau seeding assays.

J Biol Chem

January 2025

UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, United Kingdom. Electronic address:

The assembly of tau into filaments defines tauopathies, a group of neurodegenerative diseases including Alzheimer's disease (AD), Pick's disease (PiD), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). The seeded aggregation of tau has been modelled in cell culture using pro-aggregant modifications such as truncation of N- and C-termini and point-mutations within the microtubule-binding repeat domain. This limits the applicability of research findings to sporadic disease, where aggregates contain wild-type, full-length tau.

View Article and Find Full Text PDF

Tracing TMEM106B fibril deposition in aging and Parkinson's disease with dementia brains.

Life Med

February 2024

Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China.

Transmembrane protein 106B (TMEM106B), previously identified as a risk factor in frontotemporal lobar degeneration, has recently been detected to form fibrillar aggregates in the brains of patients with various neurodegenerative diseases (NDs) and normal elders. While the specifics of when and where TMEM106B fibrils accumulate in human brains, as well as their connection to aging and disease progression, remain poorly understood. Here, we identified an antibody (NBP1-91311) that directly binds to TMEM106B fibrils extracted from the brain and to Thioflavin S-positive TMEM106B fibrillar aggregates in brain sections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!