AI Article Synopsis

Article Abstract

Inhibitors of hepatitis C virus (HCV) protease have shown marked antiviral activity in short-term clinical studies in HCV-infected individuals. The interaction of the investigational HCV protease inhibitors VX-950 and SCH 503034 with ritonavir, a potent inhibitor of cytochrome P450 3A, was studied in vitro and in vivo. In rat and human liver microsomes, the metabolism of VX-950 and SCH 503034 was strongly inhibited by the presence of 4 microM ritonavir. Upon co-dosing either VX-950 or SCH 503034 with ritonavir in rats, plasma exposure of the HCV protease inhibitors was increased by > 15-fold, and plasma concentrations 8 h after dosing were increased by > 50-fold. A human pharmacokinetic model of VX-950 co-administered with low-dose ritonavir suggested that improved efficacy and/or dosing convenience may be feasible by pharmacokinetic enhancement with ritonavir.

Download full-text PDF

Source
http://dx.doi.org/10.1177/095632020701800306DOI Listing

Publication Analysis

Top Keywords

vx-950 sch
16
sch 503034
16
protease inhibitors
12
hcv protease
12
pharmacokinetic enhancement
8
hepatitis virus
8
inhibitors vx-950
8
503034 ritonavir
8
ritonavir
6
vx-950
5

Similar Publications

As an RNA virus, hepatitis C virus (HCV) is able to rapidly acquire drug resistance, and for this reason the design of effective anti-HCV drugs is a real challenge. The HCV subgenomic replicon-containing cells are widely used for experimental studies of the HCV genome replication mechanisms, for drug testing in vitro and in studies of HCV drug resistance. The NS3/4A protease is essential for virus replication and, therefore, it is one of the most attractive targets for developing specific antiviral agents against HCV.

View Article and Find Full Text PDF

To aid the design of next generation hepatitis C virus (HCV) drugs, the kinetics of the interactions between NS3 protease inhibitors and enzyme from genotypes 1a, 1b, and 3a have been characterized. The linear mechanism-based inhibitors VX-950 (telaprevir) and SCH 503034 (boceprevir) benefited from covalent adduct formation. However, the apparent affinities were rather weak (VX-950, K(D)* of 340, 8.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) belongs to Flaviviridae family and causes hazardous liver diseases leading frequently to cirrhosis and hepatocellular carcinoma. HCV is able to rapidly acquire drug resistance and for this reason there is currently no effective anti-HCV therapy in spite of appearance of new potential drugs. Mathematical models are relevant to predict the efficacy of potential drugs against virus or host targets.

View Article and Find Full Text PDF

Gateways to clinical trials.

Methods Find Exp Clin Pharmacol

September 2010

Thomson Reuters, Barcelona, Spain.

Aclidinium bromide, AE-37, Alemtuzumab, AMA1-C1/ISA 720, Amlodipine besylate/atorvastatin calcium, Arachidonic acid, Arbaclofen placarbil, Aripiprazole, ARQ-621, Azelnidipine, Azilsartan medoxomil potassium; Bevacizumab, Biphasic insulin aspart, Bortezomib; Choriogonadotropin alfa, CTS-1027; Dapagliflozin, Dasatinib, Deforolimus, Degarelix acetate, Denufosol tetrasodium, Desvenlafaxine succinate, Dronedarone hydrochloride, Duloxetine hydrochloride, Dutasteride; Enfuvirtide, Entecavir, Etaracizumab, Everolimus, Exenatide, Ezetimibe; Ferric carboxymaltose, Fludarabine, Foretinib; Gefitinib, GFT-505, GSK-256066; HPV-6/11/16/18, HuM195/rGel, HyperAcute-Lung cancer vaccine; I5NP, Imatinib mesylate, Imexon, Insulin detemir, Insulin glargine, Ivabradine hydrochloride; L2G7, Lacosamide, Lapatinib ditosylate, Lenalidomide, Lidocaine/prilocaine, Liposomal vincristine, Liraglutide, Lixivaptan; Meningococcal (groups A, C, Y and W-135) oligosaccharide diphtheria CRM197 conjugate vaccine, Methoxy polyethylene glycol-epoetin-β, Mirabegron, Morphine/oxycodone, MR Vaccine, MSC-1936369B, Mycophenolic acid sodium salt; Narlaprevir, N-Desmethylclozapine; Ocriplasmin, Olaparib, Olmesartan medoxomil, Olmesartan medoxomil/azelnidipine, ONO-5334, ONO-8539; Palifermin, Panitumumab, Pardoprunox hydrochloride, PCV7, Peginterferon alfa-2a, Peginterferon alfa-2b, Pemetrexed disodium, Pexelizumab, PF-337210, Pitavastatin calcium; Raltegravir potassium, Recombinant interleukin-7, Regadenoson, Reniale, Roflumilast, Rosuvastatin calcium; Safinamide mesilate, SB-1518, SCH-527123, Selumetinib, Sipuleucel-T, Solifenacin succinate, Sorafenib, Sunitinib malate; Tadalafil, Talaporfin sodium, Tanespimycin, Technosphere/Insulin, Telaprevir, Telatinib, Telcagepant, Telmisartan/hydrochlorothiazide, Teriparatide, Testosterone transdermal gel, TH-302, Tiotropium bromide, Tocilizumab, Trabedersen, Tremelimumab; Valsartan/amlodipine besylate, Vernakalant hydrochloride, Visilizumab, Voreloxin, Vorinostat.

View Article and Find Full Text PDF

In order to assess the natural variation in susceptibility to hepatitis C virus (HCV) NS3 protease inhibitors (PIs) among untreated HCV patient samples, the susceptibilities of 39 baseline clinical isolates were determined using a transient-replication assay on a panel of HCV PIs, including two α-ketoamides (VX-950 and SCH-503034) and three macrocyclic inhibitors (MK-7009, ITMN-191, and TMC-435350). Some natural variation in susceptibility to all HCV PIs tested was observed among the baseline clinical isolates. The susceptibility to VX-950 correlated strongly with the susceptibility to SCH-503034.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!