Microtubules are needed for the perinuclear positioning of aquaporin-2 after its endocytic retrieval in renal principal cells.

Am J Physiol Cell Physiol

Leibniz-Institut für Molekulare Pharmakologie (FMP Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany.

Published: September 2007

Water reabsorption in the renal collecting duct is regulated by arginine vasopressin (AVP). AVP induces the insertion of the water channel aquaporin-2 (AQP2) into the plasma membrane of principal cells, thereby increasing the osmotic water permeability. The redistribution of AQP2 to the plasma membrane is a cAMP-dependent process and thus a paradigm for cAMP-controlled exocytic processes. Using primary cultured rat inner medullary collecting duct cells, we show that the redistribution of AQP2 to the plasma membrane is accompanied by the reorganization of microtubules and the redistribution of the small GTPase Rab11. In resting cells, AQP2 is colocalized with Rab11 perinuclearly. AVP induced the redistribution of AQP2 to the plasma membrane and of Rab11 to the cell periphery. The redistribution of both proteins was increased when microtubules were depolymerized by nocodazole. In addition, the depolymerization of microtubules prevented the perinuclear positioning of AQP2 and Rab11 in resting cells, which was restored if nocodazole was washed out and microtubules repolymerized. After internalization of AQP2, induced by removal of AVP, forskolin triggered the AQP2 redistribution to the plasma membrane even if microtubules were depolymerized and without the previous positioning of AQP2 in the perinuclear recycling compartment. Collectively, the data indicate that microtubule-dependent transport of AQP2 is predominantly responsible for trafficking and localization of AQP2 inside the cell after its internalization but not for the exocytic transport of the water channel. We also demonstrate that cAMP-signaling regulates the localization of Rab11-positive recycling endosomes in renal principal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00628.2006DOI Listing

Publication Analysis

Top Keywords

plasma membrane
20
aqp2 plasma
16
principal cells
12
redistribution aqp2
12
aqp2
11
perinuclear positioning
8
renal principal
8
collecting duct
8
water channel
8
rab11 resting
8

Similar Publications

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Quantitative Analysis of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Stabilization in a Neural Model of Alzheimer's Disease (AD).

J Vis Exp

January 2025

Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;

A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.

View Article and Find Full Text PDF

Panicle elongation length (PEL), which determines panicle exsertion, is an important outcrossing-related trait. Mining genes controlling PEL in rice (Oryza sativa L.) has great practical significance in breeding cytoplasmic male sterility (CMS) lines with increased PEL and simplified, high-efficiency seed production.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!