Complex changes in GABA(A) receptors (GABA(A)Rs) in animal models of temporal lobe epilepsy during the chronic period include a decrease in the delta subunit and increases in the alpha4 and gamma2 subunits in the dentate gyrus. We used postembedding immunogold labeling to determine whether the subcellular locations of these subunits were also altered in pilocarpine-treated epileptic mice, and related functional changes were identified electrophysiologically. The ultrastructural studies confirmed a decrease in delta subunit labeling at perisynaptic locations in the molecular layer of the dentate gyrus where these subunits are critical for tonic inhibition. Unexpectedly, tonic inhibition in dentate granule cells was maintained in the epileptic mice, suggesting compensation by other GABA(A)Rs. An insensitivity of the tonic current to the neurosteroid tetrahydrodeoxy-corticosterone was consistent with decreased expression of the delta subunit. In the pilocarpine-treated mice, alpha4 subunit labeling remained at perisynaptic locations, but increased gamma2 subunit labeling was also found at many perisynaptic locations on granule cell dendrites, consistent with a shift of the gamma2 subunit from synaptic to perisynaptic locations and potential partnership of the alpha4 and gamma2 subunits in the epileptic animals. The decreased gamma2 labeling near the center of synaptic contacts was paralleled by a corresponding decrease in the dendritic phasic inhibition of granule cells in the pilocarpine-treated mice. These GABA(A)R subunit changes appear to impair both tonic and phasic inhibition, particularly at granule cell dendrites, and could reduce the adaptive responses of the GABA system in temporal lobe epilepsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672608PMC
http://dx.doi.org/10.1523/JNEUROSCI.1555-07.2007DOI Listing

Publication Analysis

Top Keywords

perisynaptic locations
16
granule cell
12
cell dendrites
12
phasic inhibition
12
delta subunit
12
subunit labeling
12
subunits dentate
8
dentate granule
8
tonic phasic
8
temporal lobe
8

Similar Publications

Focal clusters of peri-synaptic matrix contribute to activity-dependent plasticity and memory in mice.

Cell Rep

May 2024

Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA. Electronic address:

Recent findings show that effective integration of novel information in the brain requires coordinated processes of homo- and heterosynaptic plasticity. In this work, we hypothesize that activity-dependent remodeling of the peri-synaptic extracellular matrix (ECM) contributes to these processes. We show that clusters of the peri-synaptic ECM, recognized by CS56 antibody, emerge in response to sensory stimuli, showing temporal and spatial coincidence with dendritic spine plasticity.

View Article and Find Full Text PDF

Hippocampal pyramidal cells possess elaborate dendritic arbors with distinct domains that are targeted with input-specific synaptic sites. This synaptic arrangement is facilitated by synaptic cell-adhesion molecules that act as recognition elements to connect presynaptic and postsynaptic neurons. In this study, we investigate the organization of the synaptic recognition molecule latrophilin-2 at the surface of pyramidal neurons classified by spatial positioning and action potential firing patterns.

View Article and Find Full Text PDF

Role of spinal astrocytes through the perisynaptic astrocytic process in pathological pain.

Mol Brain

December 2023

Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon, 34141, South Korea.

Pathological pain is caused by abnormal activity in the neural circuit that transmits nociceptive stimuli. Beyond homeostatic functions, astrocytes actively participate in regulating synaptic transmission as members of tripartite synapses. The perisynaptic astrocytic process (PAP) is the key structure that allows astrocytes to play these roles and not only physically supports synapse formation through cell adhesion molecules (CAMs) but also regulates the efficiency of chemical signaling.

View Article and Find Full Text PDF

A 3D human co-culture to model neuron-astrocyte interactions in tauopathies.

Biol Proced Online

February 2023

Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.

Background: Intraneuronal tau aggregation is the major pathological hallmark of neurodegenerative tauopathies. It is now generally acknowledged that tau aggregation also affects astrocytes in a cell non-autonomous manner. However, mechanisms involved are unclear, partly because of the lack of models that reflect the situation in the human tauopathy brain.

View Article and Find Full Text PDF

Objective: Perisynaptic astrocytic processes have been suggested as sites for the regulated release of neuroactive substances. However, very little is known about the molecular properties of regulated exocytosis in these processes. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins mediate synaptic vesicle exocytosis from neuronal cells and might be candidates for regulated exocytosis also from astrocytic processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!