Cockayne syndrome protein B interacts with and is phosphorylated by c-Abl tyrosine kinase.

Nucleic Acids Res

Laboratory of Molecular Gerontology, National Institutes on Aging, National Institutes of Health, Baltimore, MD 21224, USA.

Published: October 2007

The Cockayne Syndrome group B (CSB) protein plays important roles in transcription, transcription-coupled nucleotide excision repair and base excision DNA repair. c-Abl kinase also plays a role in DNA repair as a regulator/coordinator of the DNA damage response. This study presents evidence that the N-terminal region of CSB interacts with the SH3 domain of c-Abl in vitro and in vivo. In addition, c-Abl kinase phosphorylates CSB at Tyr932. The subcellular localization of CSB to the nucleus and nucleolus is altered after phosphorylation by c-Abl. c-Abl-dependent phosphorylation of CSB increased in cells treated with hydrogen peroxide and decreased in cells pre-treated with STI-571, a c-Abl-specific protein kinase inhibitor. Activation of the c-Abl kinase in response to oxidative damage is not observed in CSB null cells. These results suggest that c-Abl and CSB may regulate each other in a reciprocal manner in response to oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1976445PMC
http://dx.doi.org/10.1093/nar/gkm386DOI Listing

Publication Analysis

Top Keywords

c-abl kinase
12
cockayne syndrome
8
dna repair
8
response oxidative
8
c-abl
7
csb
7
kinase
5
syndrome protein
4
protein interacts
4
interacts phosphorylated
4

Similar Publications

Role of Thyroid Hormone in Neurodegenerative Disorders of Older People.

Cells

January 2025

Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street, Jacksonville, FL 32209, USA.

Thyroid dysfunction is associated with a number of neuropsychiatric manifestations. Cognitive decline is a common feature of hypothyroidism and clinical or subclinical hyperthyroidism. In addition, there is a significant association between thyroid hormone (TH) levels and the degree of cognitive impairment in Parkinson's disease (PD).

View Article and Find Full Text PDF

BCR::ABL1-like B-lymphoblastic leukaemia (B-ALL) neoplasms lack the BCR::ABL1 translocation but have a gene expression profile like BCR::ABL1 positive B-ALL. This includes alterations in cytokine receptors and signalling genes, such as and Cases with CRLF2 rearrangements account for approximately 50% of cases of Philadelphia-like acute lymphoblastic leukaemia (Ph-like ALL), and the frequency of specific genomic lesions varies with ethnicity such that IGH::CRLF2 translocations are more common in Hispanics and Native Americans.We report two cases of BCR::ABL1-like ALL, with significant eosinophilia.

View Article and Find Full Text PDF

Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood.

View Article and Find Full Text PDF

Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.

View Article and Find Full Text PDF

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!