Zinc metal nanowires (NWs) of two different morphologies have been synthesized in a cold-wall physical vapor deposition (CWPVD) chamber at high vacuum conditions and growth temperatures of 150 degrees C. Substrates initially seeded by gold or platinum crystals show NWs of wool-like and/or unidirectional morphologies. Transmission electron microscopy (TEM) studies revealed that the rodlike NWs consist of single-crystalline Zn covered with a thin native oxide. NWs of wool-like morphology are suppressed using platinum as the seed metal. NW growth proceeds via vapor-solid (VS) kinetics without any catalyst particles on the wire tips. The highest observed growth rates exceed the Zn deposition rate by factors up to 860, indicating the dominant role of surface diffusion of Zn adatoms, also along the NWs. The surface diffusion length of Zn adatoms on the NW side facet is determined to be 39 mum. Direct impingement of precursor atoms on the NW tip is not significant for the growth process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl070934mDOI Listing

Publication Analysis

Top Keywords

metal nanowires
8
cold-wall physical
8
physical vapor
8
vapor deposition
8
nws wool-like
8
surface diffusion
8
nws
5
synthesis single-crystalline
4
single-crystalline metal
4
nanowires utilizing
4

Similar Publications

Low-potential bionic electrochemiluminescence sensing platform based on SnS/CuNWs synergistic promotion for highly selective detection of glycocholic acid.

Anal Chim Acta

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Background: Glycholic acid (GCA) can dynamically reflect the process of liver injury, and can be used for early diagnosis and curative effect evaluation of early hepatitis and cirrhosis. The highly sensitive detection of liver injury markers is conducive to a more accurate and effective auxiliary diagnosis of liver diseases. In addition, the low trigger potential helps to avoid more chemical interference and improve the detection sensitivity.

View Article and Find Full Text PDF

Study of Graphene Oxide and Silver Nanowires Interactions and Its Association with Electromagnetic Shielding Effectiveness.

Int J Mol Sci

December 2024

Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia.

Technological development has led to the need for materials able to block electromagnetic waves (EMWs) emitted from various devices. EMWs could negatively affect the working performance and lifetime of multiple instruments and measuring devices. New EMW shielding materials are being developed, while among nanomaterials, graphene-based composites have shown promising features.

View Article and Find Full Text PDF

In recent years, the use of bacterial flagella as biomimetic templates has gained increasing attention in nanomaterial synthesis due to their unique structural and functional properties. In this study, we optimized the flagella extraction method and achieved a high concentration of flagella solution. Flagella were isolated from .

View Article and Find Full Text PDF

1D CoMoC-Based Heterojunctional Nanowires from Pyrolytically "Squeezing" PMo/ZIF-67 Cubes for Efficient Overall Water Electrolysis.

Small

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Xuefu Road, Harbin, 150080, P. R. China.

The bi-transition-metal interstitial compounds (BTMICs) are promising for water electrolysis. The previous BTMICs are usually composed of irregular particles. Here, this work shows the synthesis of novel 1D CoMoC-based heterojunction nanowires (1D Co/CoMoC) with diameters about 50 nm and a length-to-diameter ratio about 20 for efficient water electrolysis.

View Article and Find Full Text PDF

Construction and high-throughput screening of gradient nanowire coatings on titanium surface towards ameliorated osseointegration.

Mater Today Bio

February 2025

Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.

Surface nano-modification has emerged as an effective strategy to enhance osseointegration of titanium (Ti) implants. Despite its promise, rational optimization of surface nanomorphology for ameliorated osseointegration remains a significant challenge. Our research pioneering developed a one-step alkali etching technique to produce a gradient nanowire coating with continuously varied dimensions on Ti surfaces, which was subsequently served as a versatile platform for high-throughput screening of optimal dimensions to enhance osseointegration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!