An ammonium ion-crown ether interaction has been successfully used to construct porphyrin-single-walled carbon nanotube (SWNT) donor-acceptor hybrids. The [18]crown-6 to alkyl ammonium ion binding strategy resulted in porphyrin-SWNT nanohybrids that are stable and soluble in DMF. The porphyrin-SWNT hybrids were characterized by spectroscopic, TEM, and electrochemical techniques. Both steady-state and time-resolved emission studies revealed efficient quenching of the singlet excited state of the porphyrins and free-energy calculations suggested that electron-transfer quenching occurred. Nanosecond transient absorption spectral results supported the charge-separation quenching process. Charge-stabilization was also observed for the nanohybrids in which the lifetime of the radical ion pairs was around 100 ns. The present nanohybrids were also used to reduce the hexyl viologen dication (HV2+) and to oxidize 1-benzyl-1,4-dihydronicotinamide in solution in an electron-pooling experiment. Accumulation of the radical cation (HV.+) was observed in high yields, which provided additional proof for the occurrence of photoinduced charge separation. The present study demonstrates that a hydrogen-bonding motif is a successful self-assembly method to build SWNTs bearing donor-acceptor nanohybrids, which are useful for light-energy harvesting and photovoltaic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200700583 | DOI Listing |
ACS Appl Mater Interfaces
June 2020
Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
The development of anion exchange membranes (AEMs) is hindered by the trade-off of ionic conductivity, alkaline stability, and mechanical properties. Tröger's base polymers (Tb-polymers) are recognized as promising membrane materials to overcome these obstacles. Herein, the AEMs made from Tb-poly(crown ether)s (Tb-PCEs) show good comprehensive performance.
View Article and Find Full Text PDFChemistry
November 2007
Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA.
An ammonium ion-crown ether interaction has been successfully used to construct porphyrin-single-walled carbon nanotube (SWNT) donor-acceptor hybrids. The [18]crown-6 to alkyl ammonium ion binding strategy resulted in porphyrin-SWNT nanohybrids that are stable and soluble in DMF. The porphyrin-SWNT hybrids were characterized by spectroscopic, TEM, and electrochemical techniques.
View Article and Find Full Text PDFChemistry
June 2000
Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA.
Secondary dialkylammonium (R2NH2+) ions are bound readily by dibenzo[24]crown-8 (DB24C8) to form threaded complexes, namely [2]pseudo-rotaxanes. The effect of replacing one or both of the catechol rings in DB24C8 with resorcinol rings upon the crown ether's ability to bind R2NH2+ ions has now been investigated. When only one aromatic ring is changed from catechol to resorcinol, a crown ether with a [25]crown-8 constitution is created-namely benzometaphenylene[25]crown-8 (BMP25C8).
View Article and Find Full Text PDFOrg Lett
March 2000
Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1569, and Chemical Crystallography Laboratory, Department of Chemistry, Imperial College, South Kensington, London, SW7 2AY, U.K.
Two ammonium ion/crown ether-based [2]rotaxane monomers-each incorporating (i) a dumbbell-shaped component, possessing an exchangeable benzylic triphenylphosphonium stopper, and (ii) a ring component, bearing an aldehyde function-undergo a sequence of Wittig reactions in which the surrogate triphenylphosphonium stopper is exchanged for a ring component either (i) in the same rotaxane molecule to give cyclic daisy chains by an intramolecular, chain-terminating reaction or (ii) in another rotaxane molecule to give acyclic daisy chains by an intermolecular chain-propagating reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!