A systematic classification method for polymers is not yet available in case of using near infrared spectra (NIR). That is why we have been searching for a systematic method. Because raw NIR spectra usually have few obvious peaks, NIR spectra have been pretreated by 2nd derivation for taking well modulated spectra. After the pretreatment, we applied classification and regression trees (CART) to the discrimination between the spectra and the species of polymers. As a result, we obtained a relatively simple classification tree. Judging from the obtained splitting conditions and the classified polymers, we concluded that obtained knowledge on the chemical function groups estimated by the important wavelength regions is not always applicable to this classification tree. However, we clarified the splitting rules for polymer species from the NIR spectral point of view.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.23.921DOI Listing

Publication Analysis

Top Keywords

nir spectra
8
classification tree
8
nir
5
spectra
5
systematization method
4
method distinguishing
4
distinguishing plastic
4
plastic groups
4
groups nir
4
nir spectroscopy
4

Similar Publications

Robust near-infrared modeling for pharmaceutical powder streams: External variable augmented iterative optimization technology (EVA-IOT).

Eur J Pharm Biopharm

January 2025

Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States. Electronic address:

The adoption of pure component models, such as iterative optimization technology (IOT) algorithms, is gaining significant interest in the pharmaceutical industry, primarily because of their calibration-free/minimal calibration requirements for process analytical technology applications. The IOT methods have recently demonstrated great potential for monitoring the quality of continuous powder mixtures by Near-infrared (NIR) spectroscopy. However, the dynamic conditions of continuous manufacturing processes may limit the effectiveness of such approaches.

View Article and Find Full Text PDF

This near-infrared spectral dataset consists of 2,106 diverse mineral soil samples scanned, on average, on six different units of the same low-cost commercially available handheld spectrophotometer. Most soil samples were selected from the USDA NRCS National Soil Survey Center-Kellogg Soil Survey Laboratory (NSSC-KSSL) soil archives to represent the diversity of mineral soils (0-30 cm) found in the United States, while 90 samples were selected from Ghana, Kenya, and Nigeria to represent available African soils in the same archive. All scanning was performed on dried and sieved (<2 mm) soil samples.

View Article and Find Full Text PDF

Analyzing manure nutrients such as total ammonium nitrogen (NH), dry matter (DM), calcium oxide (CaO), total nitrogen (-N), phosphorus pentoxide (PO), magnesium oxide (MgO), and potassium oxide (KO) helps in fulfilling crop nutritional needs while improving the profitability and a lower risk of pollutants. This study used two Near Infra Red (NIR) spectral datasets of fresh and dried manure. The freshly prepared NHCl, CaO, Ca(OH), PO, MgO, and KO samples were used for spectral signature peak identification and calibration.

View Article and Find Full Text PDF

Steak samples were collected from the longissimus lumborum muscles of beef carcasses (Canada AA, n = 1505; Canada AAA, n = 1363) over a 3-year period. Steaks were aged for 14 d, and tenderness was determined by slice shear force (SSF). Metabolomic profiling of beef samples was performed using rapid evaporative ionization mass spectrometry (REIMS) (N = 2853).

View Article and Find Full Text PDF

Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!