From geochemistry and biochemistry to prebiotic evolution...we necessarily enter into Gánti's fluid automata.

Genet Mol Res

Instituto de Genética Evolutiva y Biología Molecular, Universidad Manuel Beltrán, Bogotá DC, Colombia.

Published: June 2007

AI Article Synopsis

  • The study provides an overview of the geochemical conditions that could lead to the emergence of life but notes that these alone do not explain the origin of life comprehensively.
  • The authors emphasize Tibor Gánti's chemoton theory as a crucial framework for understanding biological evolution and its transitions, offering a perspective that goes beyond traditional genetic and structural views.
  • The research focuses on the formation and reactions of metal sulfide minerals, intending to explore their role in prebiotic conditions and the evolution of the genetic code, using a combination of traditional and computational techniques.

Article Abstract

The present study is just an overview of the opening of the geochemical stage for the appearance of life. But that opening would not have been sufficient for the intellectual discovery of the origin of life! The excellent works and many commendable efforts that advance this explanation have not shown the fundamental elements that participate in the theoretical frame of biological evolution. The latter imply the existence of evolutionary transitions and the production of new levels of organization. In this brief analysis we do not intend to introduce the audience to the philosophy of biology. But we do expect to provide a modest overview, in which the geochemical chemolithoautotrophic opening of the stage should be seen, at most, as the initial metabolism that enabled organic compounds to follow the road where a chemical fluid machinery was thus able to undertake the more "sublime" course of organic biological evolution. We think that Tibor Gánti's chemoton is the most significant contribution to theoretical biology, and the only course now available to comprehend the unit of evolution problem without the structuralist and functionalist conflict prevalent in theoretical biology. In our opinion Gánti's chemoton theory travels to the "locus" where evolutionary theory dares to extend itself to entities at many levels of structural organization, beyond the gene or the group above. Therefore, in this and subsequent papers on the prebiotic conditions for the eventual appearance of the genetic code, we explore the formation and the presence of metal sulfide minerals, from the assembly of metal sulfide clusters through the precipitation of nanocrystals and the further reactions resulting in bulk metal sulfide phases. We endeavor to characterize pristine reactions and the modern surfaces, utilizing traditional surface science techniques and computational methods. Moreover, mechanistic details of the overall oxidation of metal sulfide minerals are set forth. We hope that this paper will lead our audience to accept that in a chemically oscillating system the chemoton is a model fluid state automaton capable of growth and self-reproduction. This is not simply a matter of transmitting a pattern, as in inorganic crystals; such self-reproduction must be more complex than crystal growth. Indeed that is what Gánti's theoretical and abstract model offers to us all: we finally have a philosophy of evolutionary units in theoretical biology.

Download full-text PDF

Source

Publication Analysis

Top Keywords

metal sulfide
16
theoretical biology
12
biological evolution
8
gánti's chemoton
8
sulfide minerals
8
theoretical
5
geochemistry biochemistry
4
biochemistry prebiotic
4
prebiotic evolutionwe
4
evolutionwe enter
4

Similar Publications

Calcination-Induced Tight Nano-Heterointerface for Highly Effective Eradication of Rib Fracture-Related Infection by Near-Infrared Irradiation.

ACS Appl Mater Interfaces

January 2025

School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.

Rib fracture-related infection is a challenging complication of thoracic trauma due to the difficulty of treating it with antibiotics alone and the need for a second operation to remove the infected fixator and sterilize the surrounding infected tissue. In this study, inspired by the photocatalytic performance of and ion release from silver-based materials, including AgPO and AgS, a hybrid AgPO-AgS heterojunction was prepared based on anion exchange and a one-step calcination process to design a nonantibiotic coating aimed at preventing and treating rib fracture-related infection with short-term 808 nm near-infrared irradiation. Calcination at 250 °C enhanced the inductive effect of the phosphate radical and led to the formation of a tight nanoheterogeneous interface between AgPO and AgS, thereby promoting interfacial electron transfer and reducing the recombination of photogenerated carriers.

View Article and Find Full Text PDF

A soda lime glass substrate is used for fabricating CuZnSnS (CZTS) thin films using copper (II) sulfide (CuS), zinc sulfide (ZnS), and tin sulfide (SnS) targets using an advanced co-sputtering deposition process. Following that, the films are annealed at 470 °C without sulfur (S). An algorithm based on the deposition rate of the previously specified targets set the co-sputtering condition, which maintains a deposition pressure of 5, 10, 15, and 20 mTorr.

View Article and Find Full Text PDF

Optical Properties of Phenylthiolate-Capped CdS Nanoparticles.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Using many-body perturbation theory, we study the optical properties of phenylthiolate-capped cadmium sulfide nanoparticles to understand the origin of the experimentally observed blue shift in those properties with decreasing particle size. We show that the absorption spectra predicted by many-body perturbation theory agree well with the experimentally measured spectra. The results of our calculations demonstrate that all low-energy excited states correspond to a mixture of two fundamental types of excitations: intraligand and ligand-to-metal charge-transfer excitations.

View Article and Find Full Text PDF

Transition metal phosphorus sulfides (MPS), a family of two-dimensional magnetic materials with a van der Waals structure, exhibit promising applications in nonlinear optical devices. The emergence of carrier coherence in MPS is a fascinating topic in coherently controlling the nonlinear effect (or other novel phenomena). Herein, we systematically investigated the third-order nonlinear optical responses of MPS (M = Ni, Fe, Mn) flake suspensions based on spatial self-phase modulation (SSPM) effect.

View Article and Find Full Text PDF

The detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!