Sirt1, a conserved nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase, has been implicated in modulating transcriptional silencing and cell survival, and seems to play a key role in carcinogenesis through deacetylation of important regulatory proteins. This makes it a potential target in cancer therapy. The purpose of this study was to determine whether inhibition of Sirt1 by using antisense oligonucleotides (ASODN) induces apoptosis and enhances radiation sensitization in A549 lung cancer cells. Initially, transient transfection of A549 lung cancer cells with ASODN against Sirt1 specifically reduced Sirt1 expression in a dose-dependent and sequence-specific manner, at both mRNA and proteins levels. The inhibition of Sirt1 obviously decreased A549 cells survival, induced G1 arrest as well as apoptosis. Furthermore, the inhibition of Sirt1 by ASODN greatly increased radiation-induced antiproliferation effects involving in increasing acetylation of tumour suppressor p53 and Bax expression in A549 lung cancer cells. In summary, our results indicate that downregulation of Sirt1 by ASODN decreases survival and increases radiation-induced antiproliferation effects of human lung cancer cells and suggest that inhibition of Sirt1 by ASODN may be a potential gene therapy approach to the treatment of lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lungcan.2007.05.013DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
cancer cells
20
a549 lung
16
inhibition sirt1
16
sirt1 asodn
12
downregulation sirt1
8
sirt1 antisense
8
antisense oligonucleotides
8
induces apoptosis
8
apoptosis enhances
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!