Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phototrophic organisms use photosynthesis to convert solar energy into chemical energy. In nature, the chemical energy is stored in a diverse range of biopolymers. These sunlight-derived, energy-rich biopolymers can be converted into environmentally clean and CO(2) neutral fuels. A select group of photosynthetic microorganisms have developed the ability to extract and divert protons and electrons derived from water to chloroplast hydrogenase(s) to produce molecular H(2) fuel. Here, we describe the development and characterization of C. reinhardtii strains, derived from the high H(2) production mutant Stm6, into which the HUP1 (hexose uptake protein) hexose symporter from Chlorella kessleri was introduced. The isolated cell lines can use externally supplied glucose for heterotrophic growth in the dark. More importantly, external glucose supply (1mM) was shown to increase the H(2) production capacity in strain Stm6Glc4 to approximately 150% of that of the high-H(2) producing strain, Stm6. This establishes the foundations for a new fuel production process in which H(2)O and glucose can simultaneously be used for H(2) production. It also opens new perspectives on future strategies for improving bio-H(2) production efficiency under natural day/night regimes and for using sugar waste material for energy production in green algae as photosynthetic catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2007.05.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!