Participation of histones, histone modifying enzymes and histone chaperones in vertebrate cell functions.

Subcell Biochem

Department of Life Science, Frontier Science Research Center, Miyazaki Medical College, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan.

Published: July 2007

AI Article Synopsis

  • Alterations in chromatin structure are necessary for accessing DNA, influenced by histone variants, chromatin remodeling, and post-translational modifications, especially histone acetylation.
  • Researchers used gene targeting in DT40 cell lines to study the roles of various histones, histone deacetylases (HDACs), and acetyltransferases (HATs) in gene regulation and cell function.
  • Key findings include the compensatory nature of histone subtypes, the essential role of HDAC-3 for cell viability, and the significant impact of HAT GCN5 on cell growth and cycle progression.

Article Abstract

Alterations in the chromatin structure are essential for easy accesses to chromosomal DNA. Such architectural alterations can be achieved by four means: (i) variants of histone subtypes, (ii) chromatin remodeling, (iii) post-translational modification, and (iv) chromatin assembly. This chapter discusses mainly on the first, third and fourth mechanisms, and especially on the acetylation of core histones, one of the third mechanisms. Taking the advantage of the gene targeting technique, we systematically established numerous mutant DT40 cell lines, each lacking particular gene, of interest such that encoding histones, histone deacetylases (HDACs), acetyltransferases (HATs) and chaperones, etc. Every subtype member of the histone gene family is capable of compensating the loss of others to maintain the mRNA level of each histone subtype, and most of histone variants are involved positively or negatively in the transcription regulation of particular genes. Regarding HDACs, HDAC-2 controls the amount of the IgM H-chain at the steps of both transcription and alternative pre-mRNA processing, and HDAC-3 is indispensable for cell viability. Concerning HATs, GCN5 has tremendous impact on growth kinetics by preferentially acting as a supervisor in the normal cell cycle progression. The distinct participatory roles of the N-terminal and C-terminal halves of HIRA, one of histone chaperones, in both cell growth and transcription regulations of cell cycle-related genes, have also been highlighted. Therefore, the gene targeting technique in the DT40 cell line can be used as a powerful tool for the functional analysis of histones, histone modifying enzymes and histone chaperones relevant to chromatin biology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4020-4896-8_13DOI Listing

Publication Analysis

Top Keywords

histones histone
12
histone chaperones
12
histone
10
histone modifying
8
modifying enzymes
8
enzymes histone
8
gene targeting
8
targeting technique
8
dt40 cell
8
cell
7

Similar Publications

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Discovery of novel dual-target inhibitors of LSD1/EGFR for non-small cell lung cancer therapy.

Acta Pharmacol Sin

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.

Histone lysine-specific demethylase 1 (LSD1) is overexpressed in various solid and hematological tumors, suggesting its potential as a therapeutic target, but there are currently no LSD1 inhibitors available on the market. In this study we employed a computer-guided approach to identify novel LSD1/EGFR dual inhibitors as a potential therapeutic agent for non-small cell lung cancer. Through a multi-stage virtual screening approach, we found L-1 and L-6, two compounds with unique scaffolds that effectively inhibit LSD1 with IC values of 6.

View Article and Find Full Text PDF

ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway.

Cell Death Differ

January 2025

Department of Hepatobiliary Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.

Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism.

View Article and Find Full Text PDF

The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!