Toxicities induced in cultured cells exposed to zearalenone: apoptosis or mutagenesis?

J Biochem Mol Toxicol

Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, Rue Avicenne, 5019 Monastir, Tunisia.

Published: September 2007

Zearalenone (ZEN) is a fusarotoxin produced mainly by Fusarium graminearum in temperate and warm countries. ZEN has several adverse effects on humans and animals. It has a strong estrogenic activity associated with hyperestrogenism and leads to several physiological alterations in the reproductive tract. Even though the mutagenic and genotoxic proprieties of ZEN have been described recently, its molecular mechanisms of action are not completely understood. The aim of this study was to determine the involvement of other possible mechanisms in ZEN-induced toxicities. Each of the following toxicities, cytotoxicity, cell cycle perturbation, genotoxicity, and mutagenicity, was monitored in Vero cells exposed to ZEN. Our results showed that ZEN-reduced cell viability correlated to cell cycle perturbation-induced DNA fragmentation, resulting in DNA-laddering patterns on agar gel electrophoresis. This observation is consistent with apoptosis, which was confirmed by induction of apoptotic bodies. Moreover, ZEN induced in a concentration-dependant manner the formation of micronuclei and chromosome aberrations. This apparent contradiction between the apoptotic and mutagenic effects of ZEN can be explained by the modification of normal cellular regulation inducing apoptotic or antiapoptotic factors resulting from a lack of or an incorrect DNA-reparation in relation to cell exposure to the toxin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.20171DOI Listing

Publication Analysis

Top Keywords

cells exposed
8
cell cycle
8
zen
6
toxicities induced
4
induced cultured
4
cultured cells
4
exposed zearalenone
4
zearalenone apoptosis
4
apoptosis mutagenesis?
4
mutagenesis? zearalenone
4

Similar Publications

Background And Study Aims: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates. In vitro model is an indispensable tool to study the pathogenesis of NEC. This study explored the effects of different stress factors on intestinal injury in vitro.

View Article and Find Full Text PDF

Endothelial cell (EC)-specific CTGF/CCN2 Expression Increases EC Reprogramming and Atherosclerosis.

Matrix Biol

January 2025

Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:

Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.

View Article and Find Full Text PDF

Exposure to nano-polystyrene during pregnancy leads to Alzheimer's disease-related pathological changes in adult offspring.

Ecotoxicol Environ Saf

January 2025

Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China. Electronic address:

Nanoplastics are common environmental pollutants. As of now, research has yet to explore how exposure to nanomaterials during gestation might influence the risk of developing Alzheimer's disease (AD) in offspring. Throughout the research, we assessed the AD pathology in adult offspring of mice prenatal 80 nm polystyrene nanoparticles (PS-NPs) exposure.

View Article and Find Full Text PDF

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a synthetic additive widely used in the rubber industry, and its oxidized product 6PPD-quinone (6PPDQ), have garnered widespread attention as an emerging hazardous chemicals owing to their potential detrimental effects on aquatic ecosystem and human health. The effects of 6PPD and 6PPDq on the female reproductive tract, especially embryo implantation, remain unknown and were investigated in this study. We used the spheroid attachment and outgrowth models of BeWo trophoblastic spheroids and Ishikawa cells as surrogates for the human blastocyst and endometrial epithelium, respectively.

View Article and Find Full Text PDF

Chronic NaAsO exposure promotes migration and invasion of prostate cancer cells by Akt/GSK-3β/β-catenin/TCF4 axis-mediated epithelial-mesenchymal transition.

Ecotoxicol Environ Saf

January 2025

Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China. Electronic address:

Inorganic arsenic is a Class I human Carcinogen. However, the role of chronic inorganic arsenic exposure on prostate cancer metastasis still unclear. This study aimed to investigate the effects and mechanism of chronic NaAsO exposure on migration and invasion of prostate cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!