Magnetite nanocrystals have been widely used in many fields. Recently, a new magnetite nanocrystals, called magnetosome, has been found in magnetotactic bacteria. In this article, we researched on the properties of magnetosomes in detail, such as crystalline, morphology, crystal-size distributions, vitro cytotoxicity, and magnetic properties and quantified primary amino groups on the magnetosomes membrane surface by fluorescamine assay for the first time. From the results, it was clear that magnetosomes have more potential in the biomedical applications than synthetic magnetite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0885328207079064 | DOI Listing |
Biomed Chromatogr
February 2025
Department of Pharmacy, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China.
Choerospondias axillaris is a medicinal plant used for treating coronary heart disease (CHD) due to its broad spectrum of anti-inflammatory activities. Cyclooxygenase 2 (COX-2) and lipoxygenase 5 (5-LOX) were immobilized on magnetic nanoparticles for selective ligand-extraction of these two enzymes present in C. axillaris.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:
The acidophilic and heat-resistant characteristics of Alicyclobacillus acidoterrestris (A. acidoterrestris) pose significant challenges to fruit juice production. Traditional thermal removal methods are often ineffective against this resilient bacterium.
View Article and Find Full Text PDFChemosphere
January 2025
Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Coahuila. C.P. 25900, Mexico.
There is a debate about the implications of the effect of nanoparticles or nanomaterials on edible plants and soil organisms. Earthworms have been used to evaluate soil quality, reproduction, survival, and other biochemical parameters when organisms are exposed to nanomaterials. Most studies have been performed in laboratory settings, and little has been studied under realistic conditions, especially when earthworms and corn plants share the same natural soil and organic matter space.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored.
View Article and Find Full Text PDFDiscov Nano
January 2025
Particle Engineering Centre, Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
The increasing demand for magnetic iron oxide nanoparticles (IONPs) in biomedicine necessitates efficient and scalable production methods. Thermal decomposition offers excellent tailoring of the particle properties but its discontinuous batch-operation is restricting scale-up and industrial application. To overcome these challenges, several studies have demonstrated semi-continuous thermal decomposition by slowly injecting the precursor, though only half of them produce magnetite IONPs and even fewer use iron oleate precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!