Functionalized HMS mesoporous silica as solid phase extractant for Pb(II) prior to its determination by flame atomic absorption spectrometry.

J Sep Sci

Departamento de Química Inorgánica y Analítica, E.S.C.E.T, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, Madrid, Spain.

Published: July 2007

In this work, a mesoporous silica has been chemically modified with 5-mercapto-1-methyl-1-H-tetrazol using the homogeneous route (MTTZ-HMS). This synthetic route involved the reaction of 5-mercapto-1-methyl-1-H-tetrazol with 3-chloropropyltriethoxysilane, prior to immobilization on the support. The resulting material has been characterized and employed as solid phase extractant for Pb(II). The effect of several variables (stirring time, pH, temperature, metal concentration, presence of other metals) has been studied using batch and column techniques. In batch experiments, 15 min stirring time, 55 degrees C and pH 8 were the optimal conditions for Pb(II) adsorption. In column experiments, sorption was quantitative for 1000 mL of 2.41 x 10(-4 )mM of Pb(II) solution and adsorbed ions were eluted out by 5 mL of 1 M HCl (preconcentration factor of 200). Spiked tap water was used for the preconcentration and determination of Pb(II) by flame atomic absorption spectrometry, and a 100% recovery was obtained. The LOD and LOQ values of the proposed method were found to be 3.52 x 10(-3) and 4.20 x 10(-3 )mM, respectively. The RSD for three preconcentration experiments was found to be

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.200600540DOI Listing

Publication Analysis

Top Keywords

mesoporous silica
8
solid phase
8
phase extractant
8
extractant pbii
8
flame atomic
8
atomic absorption
8
absorption spectrometry
8
stirring time
8
pbii
5
functionalized hms
4

Similar Publications

A Comprehensive Review: Mesoporous Silica Nanoparticles Greatly Improve Pharmacological Effectiveness of Phytoconstituent in Plant Extracts.

Pharmaceuticals (Basel)

December 2024

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia.

Medicinal plants are increasingly being explored due to their possible pharmacological properties and minimal adverse effects. However, low bioavailability and stability often limit efficacy, necessitating high oral doses to achieve therapeutic levels in the bloodstream. Mesoporous silica nanoparticles (MSNs) offer a potential solution to these limitations.

View Article and Find Full Text PDF

The textural properties of synthetic and natural clays in the sodium form and exchanged with tetramethylammonium cations (TMA) were characterized using N and Ar physisorption isotherms at cryogenic temperatures. Specific surface areas and micro/mesoporous volumes were determined using the BET and the models. The analysis requires the use of reference isotherms measured at the same temperature on the surface of non-porous materials with an identical chemical composition.

View Article and Find Full Text PDF

The resistivity of the silica SBA-15 type can be significantly improved by forming a thin layer of carbon on the pore surface. This is possible through the carbonization reaction of a surfactant used as a structure-directing agent in the synthesis of mesostructured silica materials. The synthesis of this type of silica-carbon composite (SBA-C) is based on the use of sulfuric acid to create a carbon layer from surfactant molecules encapsulated in silica mesopores.

View Article and Find Full Text PDF

: This study explored the potential of MCM-48 mesoporous silica matrices as a drug delivery system for metformin hydrochloride, aimed at improving the therapeutic management of type 2 diabetes mellitus. The objectives included the synthesis and characterization of MCM-48, assessment of its drug loading capacity, analysis of drug release profiles under simulated physiological conditions, and the development of a multifractal dynamics-based theoretical framework to model and interpret the release kinetics. : MCM-48 was synthesized using a sol-gel method and characterized by SEM-EDX, TEM, and nitrogen adsorption techniques.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles as sensitizers: A novel approach to enhancing shear wave elastography in liver stiffness measurement.

Biomater Adv

January 2025

Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Rd, 710032 Xi'an, Shaanxi, China. Electronic address:

Purpose: The objective of this study is to elucidate the sensitizing effect of mesoporous silica nanoparticles (MSNs) on shear wave elastography (SWE) and to investigate the potential application of MSNs as a sensitizer to enhance the sensitivity of SWE in the diagnosis of metabolic-associated steatohepatitis (MASH).

Materials And Methods: The in vitro gelatin models with varying ratios were assessed using SWE to identify the gelatin ratio that most closely approximates with human liver stiffness. Following the characterization of the dispersion properties of MSNs, in vitro models incorporating MSNs of different particle sizes were developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!