Abnormal accumulation of beta-catenin is considered to be a strong driving force in hepatocellular carcinogenesis; however, the mechanism of beta-catenin accumulation in tumours is unclear. Here, it was demonstrated that hepatitis B virus X protein (HBx) differentially regulates the level of beta-catenin through two ubiquitin-dependent proteasome pathways depending on p53 status. In the presence of p53, HBx downregulated beta-catenin through the activation of a p53-Siah-1 proteasome pathway. For this purpose, HBx upregulated Siah-1 expression at the transcriptional level via activation of p53. In the absence of p53, however, HBx stabilized beta-catenin through the inhibition of a glycogen synthase kinase-3beta-dependent pathway. Interestingly, HBx variants with a Pro-101 to Ser substitution were unable to activate p53 and thus could stabilize beta-catenin irrespective of p53 status. Based on these findings, a model of beta-catenin regulation by HBx is proposed whereby the balance between the two opposite activities of HBx determines the overall expression level of beta-catenin. Differential regulation of beta-catenin by HBx depending on host (p53 status) and viral factors (HBx sequence variation) helps not only to explain the observation that cancers accumulating beta-catenin also exhibit a high frequency of p53 mutations but also to understand the contradictory reports on the roles of HBx during hepatocellular carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.82836-0DOI Listing

Publication Analysis

Top Keywords

p53 status
12
beta-catenin
11
hbx
10
p53
9
hepatitis virus
8
virus protein
8
hepatocellular carcinogenesis
8
level beta-catenin
8
p53 hbx
8
protein differentially
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!