Protein expression of the transcriptional regulator MI-ER1 alpha in adult mouse tissues.

J Mol Histol

Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada A1B 3V6.

Published: February 2008

MI-ER1 is a novel transcriptional regulator that plays a critical role in embryonic development and is differentially expressed in breast carcinoma. The MI-ER1 protein sequence is highly conserved among species, with 95% identity between mouse and humans and 72% between Xenopus and mouse. There are two major protein isoforms, MI-ER1alpha and MI-ER1beta, which differ in the sequence of their C-terminus. MI-ER1alpha is of particular interest because it contains a consensus LXXLL nuclear receptor interaction motif and the current study was undertaken to determine the expression pattern of MI-ER1alpha protein in adult mouse tissues. Immunohistochemical analysis of paraffin-embedded tissue using an MI-ER1alpha-specific antibody revealed that the majority of mouse adult tissues examined showed very weak or no immunoreactivity; these included tissues of the lung, liver, intestine, uterus, spleen, lymph node, bladder as well as skeletal muscle. Interestingly, a subset of endocrine tissues displayed intense staining for MI-ER1alpha. Specifically, the islets of Langerhans, the zona glomerulosa and medulla of the adrenal gland, the ovary and the hypothalamus were intensely stained. In addition, both anterior and posterior pituitary showed moderate immunoreactivity, as did the parafollicular cells of the thyroid gland and Leydig cells and spermatids in the testes. Negative endocrine tissues included follicular cells of the thyroid gland and the X zone of the adrenal cortex. A few non-endocrine tissues displayed moderate immunoreactivity; these included all tubules and collecting ducts in the kidney, myocardial and endocardial layers of the heart, the hippocampal formation, pyramidal neurons in the cortex and the ductal epithelium of the mammary gland. In all cases, MI-ER1alpha immunoreactivity was cytoplasmic. This study represents the first immunohistochemical analysis of MI-ER1alpha expression in mammals and our data suggest that this transcriptional regulator plays a role in specific endocrine pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-007-9116-3DOI Listing

Publication Analysis

Top Keywords

transcriptional regulator
12
adult mouse
8
mouse tissues
8
regulator plays
8
immunohistochemical analysis
8
immunoreactivity included
8
endocrine tissues
8
tissues displayed
8
moderate immunoreactivity
8
cells thyroid
8

Similar Publications

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.

View Article and Find Full Text PDF

Background: Deformed wing virus (DWV) is a major honey bee pathogen that is actively transmitted by the parasitic mite Varroa destructor and plays a primary role in Apis mellifera winter colony losses. Despite intense investigation on this pollinator, which has a unique environmental and economic importance, the mechanisms underlying the molecular interactions between DWV and honey bees are still poorly understood. Here, we report on a group of honey bee proteins, identified by mass spectrometry, that specifically co-immunoprecipitate with DWV virus particles.

View Article and Find Full Text PDF

Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus).

BMC Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.

View Article and Find Full Text PDF

Cell cycle dysregulation and the corresponding metabolic reprogramming play significant roles in tumor development and progression. CDK9, a kinase that regulates gene transcription and cell cycle, also induces oncogene transcription and abnormal cell cycle in AML cells. The function of CDK9 for gene regulation in AML cells requires further exploration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!