Lipopolysaccharide (LPS) enhances the production of nitric oxide (NO) in interferon (IFN)-gamma-stimulated vascular endothelial cells. We studied the mechanism by which LPS enhances IFN-gamma-induced NO production by using the murine vascular endothelial cell line, END-D. LPS enhanced IFN-gamma-induced NO production via augmented expression of inducible type NO synthase (iNOS) mRNA. LPS significantly augmented the activation of interferon regulatory factor (IRF)-1 in IFN-gamma-stimulated END-D cells, although it did not affect the activation of either MyD88-dependent nuclear factor (NF)-kappaB or MyD88-independent IRF-3. SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK), prevented the nuclear translocation of IRF-1 in LPS and IFN-gamma-stimulated END-D cells, and inhibited the iNOS expression and NO production in those cells. Therefore, it is proposed that LPS enhanced NO production in IFN-gamma-stimulated END-D cells via augmenting p38 MAPKmediated IRF-1 activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0968051907080894 | DOI Listing |
Clin Sci (Lond)
January 2025
Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
Hepatocellular carcinoma (HCC) is the most common cancer worldwide and vascular endothelial growth factor receptor-2 (VEGFR-2) is an important target in the development of inhibitors for the treatment of liver cancer. So far, however, there are no effective drugs targeting VEGFR-2 to achieve complete treatment of liver cancer. In this study, we employed molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM-GBSA) method, quantum mechanics/molecular mechanics (QM/MM) calculations and steered molecular dynamics simulations to discover the potential inhibitors from COCONUT database targeting VEGFR-2.
View Article and Find Full Text PDFPhysiol Rep
February 2025
Department of Biomedical Engineering, Toyo University, Saitama, Japan.
The present study aims to examine the effect of 4 h of continuous sitting on cerebral endothelial function, which is a crucial component of cerebral blood flow regulation. We hypothesized that 4 h of sitting may impair cerebral endothelial function similarly to how it affects lower limb vasculature. Thirteen young, healthy participants were instructed to remain seated for 4 h without moving their lower limbs.
View Article and Find Full Text PDFBioact Mater
May 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.
View Article and Find Full Text PDFPostepy Dermatol Alergol
December 2024
Department of Dermatology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
Introduction: Systemic sclerosis is a complex disease characterized by the fibrosis and vasculopathy.
Aim: We aimed to assess scleroderma by examining involucrin, an early terminal differentiation marker of epidermal keratinocytes.
Material And Methods: Immunolocalization of involucrin was performed in healthy controls and patients with scleroderma lesions by using an immunofluorescence (IF) assay.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!