Impaired lung function in severe acute pancreatitis is the primary cause of morbidity and mortality in this condition. Hydrogen sulfide (H(2)S) is a naturally occurring gas that has been shown to be a potent vasodilator. Diclofenac is a nonsteroidal anti-inflammatory drug and has been shown to have anti-inflammatory, analgesic, and antipyretic activity. ACS15 is an H(2)S-releasing derivative of diclofenac. Little is known about its effectiveness as an anti-inflammatory drug. In this report, we describe the effect of diclofenac and its H(2)S-releasing derivative on acute pancreatitis and associated lung injury in the mouse. Acute pancreatitis was induced in mice by hourly i.p. injections of cerulein. Diclofenac and ACS15 were administered either 1 hour before or 1 hour after starting cerulein injections, and the severity of acute pancreatitis and associated lung injury was assessed. The severity of acute pancreatitis was determined by hyperamylasemia, neutrophil sequestration in the pancreas (pancreatic myeloperoxidase activity), and pancreatic acinar cell injury/necrosis on histological examination of pancreas sections. The severity of acute pancreatitis-associated lung injury was assessed by neutrophil sequestration in the lungs (lung myeloperoxidase activity) and by histological examination of lung sections. ACS15, given prophylactically and therapeutically, significantly reduced lung inflammation without having any significant effect on pancreatic injury. These results suggest the usefulness of H(2)S-releasing nonsteroidal anti-inflammatory drugs as potential treatments for pancreatitis-associated lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.1097/shk.0b013e31806ec26DOI Listing

Publication Analysis

Top Keywords

lung injury
20
acute pancreatitis
20
pancreatitis-associated lung
12
severity acute
12
lung
9
acute pancreatitis-associated
8
nonsteroidal anti-inflammatory
8
anti-inflammatory drug
8
h2s-releasing derivative
8
pancreatitis associated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!