Objective: CD8(+) T-cells specific for islet antigens are essential for the development of type 1 diabetes in the NOD mouse model of the disease. Such T-cells can also be detected in the blood of type 1 diabetic patients, suggesting their importance in the pathogenesis of the human disease as well. The development of peptide-based therapeutic reagents that target islet-reactive CD8(+) T-cells will require the identification of disease-relevant epitopes.
Research Design And Methods: We used islet-infiltrating CD8(+) T-cells from HLA-A*0201 transgenic NOD mice in an interferon-gamma enzyme-linked immunospot assay to identify autoantigenic peptides targeted during the spontaneous development of disease. We concentrated on insulin (Ins), which is a key target of the autoimmune response in NOD mice and patients alike.
Results: We found that HLA-A*0201-restricted T-cells isolated from the islets of the transgenic mice were specific for Ins1 L3-11, Ins1 B5-14, and Ins1/2 A2-10. Insulin-reactive T-cells were present in the islets of mice as young as 5 weeks of age, suggesting an important function for these specificities early in the pathogenic process. Although there was individual variation in peptide reactivity, Ins1 B5-14 and Ins1/2 A2-10 were the immunodominant epitopes. Notably, in vivo cytotoxicity to cells bearing these peptides was observed, further confirming them as important targets of the pathogenic process.
Conclusions: The human versions of B5-14 and A2-10, differing from the murine peptides by only a single residue, represent excellent candidates to explore as CD8(+) T-cell targets in HLA-A*0201-positive type 1 diabetic patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/db07-0332 | DOI Listing |
Cancers (Basel)
January 2025
Department of Otolaryngology/Head and Neck Surgery, Vrije Universiteit, Amsterdam UMC, Boelelaan 1117, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
Background/objectives: Most studies on the interaction between the immune system and cancer focus on T-cells, whereas studies on tumor-infiltrating B-lymphocytes (TIL-Bs) are still underrepresented. The aim of this study was to assess the prognostic impact of TIL-Bs in early- and advanced-stage oral cavity squamous cell carcinoma (OCSCC).
Methods: In total, 222 OCSCCs were studied.
Cancers (Basel)
December 2024
Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA.
Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.
Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA.
Immunotherapy, particularly that based on blocking checkpoint proteins in many tumors, including melanoma, Merkel cell carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast (TNB cancer), renal cancer, and gastrointestinal and endometrial neoplasms, is a therapeutic alternative to chemotherapy. Immune checkpoint inhibitor (ICI)-based therapies have the potential to target different pathways leading to the destruction of cancer cells. Although ICIs are an effective treatment strategy for patients with highly immune-infiltrated cancers, the development of different adverse effects including cutaneous adverse effects during and after the treatment with ICIs is common.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!