Background: Uncovering cellular roles of a protein is a task of tremendous importance and complexity that requires dedicated experimental work as well as often sophisticated data mining and processing tools. Protein functions, often referred to as its annotations, are believed to manifest themselves through topology of the networks of inter-proteins interactions. In particular, there is a growing body of evidence that proteins performing the same function are more likely to interact with each other than with proteins with other functions. However, since functional annotation and protein network topology are often studied separately, the direct relationship between them has not been comprehensively demonstrated. In addition to having the general biological significance, such demonstration would further validate the data extraction and processing methods used to compose protein annotation and protein-protein interactions datasets.

Results: We developed a method for automatic extraction of protein functional annotation from scientific text based on the Natural Language Processing (NLP) technology. For the protein annotation extracted from the entire PubMed, we evaluated the precision and recall rates, and compared the performance of the automatic extraction technology to that of manual curation used in public Gene Ontology (GO) annotation. In the second part of our presentation, we reported a large-scale investigation into the correspondence between communities in the literature-based protein networks and GO annotation groups of functionally related proteins. We found a comprehensive two-way match: proteins within biological annotation groups form significantly denser linked network clusters than expected by chance and, conversely, densely linked network communities exhibit a pronounced non-random overlap with GO groups. We also expanded the publicly available GO biological process annotation using the relations extracted by our NLP technology. An increase in the number and size of GO groups without any noticeable decrease of the link density within the groups indicated that this expansion significantly broadens the public GO annotation without diluting its quality. We revealed that functional GO annotation correlates mostly with clustering in a physical interaction protein network, while its overlap with indirect regulatory network communities is two to three times smaller.

Conclusion: Protein functional annotations extracted by the NLP technology expand and enrich the existing GO annotation system. The GO functional modularity correlates mostly with the clustering in the physical interaction network, suggesting that the essential role of structural organization maintained by these interactions. Reciprocally, clustering of proteins in physical interaction networks can serve as an evidence for their functional similarity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1940026PMC
http://dx.doi.org/10.1186/1471-2105-8-243DOI Listing

Publication Analysis

Top Keywords

automatic extraction
12
annotation
12
functional annotation
12
nlp technology
12
physical interaction
12
protein
10
gene ontology
8
ontology annotation
8
protein networks
8
protein network
8

Similar Publications

Background: Dialysis Access (DA) stenosis impacts hemodialysis efficiency and patient health, necessitating exams for early lesion detection. Ultrasound is widely used due to its non-invasive, cost-effective nature. Assessing all patients in large hemodialysis facilities strains resources and relies on operator expertise.

View Article and Find Full Text PDF

Deep Learning-Based Diagnosis Algorithm for Alzheimer's Disease.

J Imaging

December 2024

College of Electrical and Information, Northeast Agricultural University, 600 Changjiang Road, Harbin 150038, China.

Alzheimer's disease (AD), a degenerative condition affecting the central nervous system, has witnessed a notable rise in prevalence along with the increasing aging population. In recent years, the integration of cutting-edge medical imaging technologies with forefront theories in artificial intelligence has dramatically enhanced the efficiency of identifying and diagnosing brain diseases such as AD. This paper presents an innovative two-stage automatic auxiliary diagnosis algorithm for AD, based on an improved 3D DenseNet segmentation model and an improved MobileNetV3 classification model applied to brain MR images.

View Article and Find Full Text PDF

Surface electromyography (sEMG) signals reflect the local electrical activity of muscle fibers and the synergistic action of the overall muscle group, making them useful for gesture control of myoelectric manipulators. In recent years, deep learning methods have increasingly been applied to sEMG gesture recognition due to their powerful automatic feature extraction capabilities. sEMG signals contain rich local details and global patterns, but single-scale convolutional networks are limited in their ability to capture both comprehensively, which restricts model performance.

View Article and Find Full Text PDF

High-voltage overhead power lines serve as the carrier of power transmission and are crucial to the stable operation of the power system. Therefore, it is particularly important to detect and remove foreign objects attached to transmission lines, as soon as possible. In this context, the widespread promotion and application of smart robots in the power industry can help address the increasingly complex challenges faced by the industry and ensure the efficient, economical, and safe operation of the power grid system.

View Article and Find Full Text PDF

Objective: To explore whether radiomics analysis of pericoronary adipose tissue (PCAT) captured by coronary computed tomography angiography (CCTA) could discriminate unstable angina (UA) from stable angina (SA).

Methods: In this single-center retrospective case-control study, coronary CT images and clinical data from 240 angina patients were collected and analyzed. Patients with unstable angina ( = 120) were well-matched with those having stable angina ( = 120).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!