In order to adapt to seasonal changes, animals exhibit robust changes in their reproductive status, body weight, and molt. However, the molecular mechanisms regulating such seasonal changes in physiology and behavior are not fully understood. Here, we report the photoperiodic regulation of the insulin receptor (IR) gene in the infundibular nucleus (anatomically homologous to the mammalian arcuate nucleus) of the Japanese quail. When the birds were transferred from short-day to long-day conditions, a significant increase in the level of IR mRNA was observed on the 10th long day, whereas that in testicular length was observed on the 5th long day. Castration abolished IR mRNA expression induced by long-day conditions, whereas the testosterone administration mimicked induction of IR mRNA expression induced by long-day conditions. These results suggested that the photoperiodic regulation of the IR mRNA in the infundibular nucleus is mediated by testosterone from the testes. It has been known that the central administration of insulin increases luteinizing hormone (LH) secretion, and neuron-specific disruption of IR gene causes impaired gonadal function due to the dysregulation of LH and increased food intake and body weight. Together with these results, the photoperiodic regulation of the IR mRNA in the hypothalamus may enhance the effect of long days in the seasonal response of reproduction and body weight changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2007.06.028 | DOI Listing |
Introduction: This report provides prevalence estimates of adult obesity and severe obesity during August 2021-August 2023 by age and sex, as well as obesity prevalence by education level. Trends in the prevalence of adult obesity and severe obesity over the previous 10 years are also shown.
Methods: Data from the August 2021-August 2023 National Health and Nutrition Examination Survey (NHANES) were used for prevalence estimates, incorporating examination survey sample weights into the analysis and accounting for the survey's complex, multistage probability design.
Proc Natl Acad Sci U S A
January 2025
Department of Economics, University of Oregon, Eugene, OR 97403.
The advent of herbicide-tolerant genetically modified (GM) crops spurred rapid and widespread use of the herbicide glyphosate throughout US agriculture. In the two decades following GM-seeds' introduction, the volume of glyphosate applied in the United States increased by more than 750%. Despite this breadth and scale, science and policy remain unresolved regarding the effects of glyphosate on human health.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medical Sciences, Cancer Epidemiology Unit, University of Turin and CPO-Piemonte, Turin, Italy.
Objectives: Maternal occupational exposures during early pregnancy can be detrimental to foetus health and have short- and long-term health effects on the child. This study examined their association with adverse birth outcomes.
Methods: The study included 3938 nulliparous women from the Italian NINFEA mother-child cohort.
PLoS One
January 2025
Faculty of Sport Sciences, Waseda University, Saitama, Japan.
Walking patterns can differ between children and adults, both kinematically and kinetically. However, the detailed nature of the ankle pattern has not been clarified. We investigated musculature, biomechanics, and muscle activation strategies and their relevance to walking performance in preschool (PS) and school children (SC), with adults (AD) as reference.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.
Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.
Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!