Optimization of oligonucleotide microarray fabricated by spotting 65-mer.

Anal Biochem

Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Published: September 2007

DNA microarrays currently provide measurements of sufficiently high quality to allow a wide variety of sound inferences about gene regulation and the coordination of cellular processes to be drawn. Nonetheless, a desire for greater precision in the measurements continues to drive the microarray research community to seek higher measurement quality through improvements in array fabrication and sample labeling and hybridization. We prepared oligonucleotide microarrays by printing 65-mer on aldehyde functional group-derivatized slides as described in a previous study. We could improve the reliability of data by removing enzymatic bias during probe labeling and hybridizing under a more stringent condition. This optimized method was used to profile gene expression patterns for nine different mouse tissues and organs, and multidimensional scaling (MDS) analysis of data showed both strong similarity between like samples and a clear, highly reproducible separation between different tissue samples. Three other microarrays were fabricated on commercial substrates and hybridized following the manufacturer's instructions. The data were then compared with in-house microarray data and reverse transcription-polymerase chain reaction (RT-PCR) data. The microarray printed on the custom aldehyde slide was superior to microarrays printed on commercially available substrate slides in terms of signal intensities, background, and hybridization characteristics. The data from the custom substrate microarray generally showed good agreement in quantitative changes up to 100-fold changes of transcript abundance with RT-PCR data. However, more accurate comparisons will be made as more genomic sequence information is gathered in the public data domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697255PMC
http://dx.doi.org/10.1016/j.ab.2007.06.005DOI Listing

Publication Analysis

Top Keywords

data
8
rt-pcr data
8
microarray
5
optimization oligonucleotide
4
oligonucleotide microarray
4
microarray fabricated
4
fabricated spotting
4
spotting 65-mer
4
65-mer dna
4
microarrays
4

Similar Publications

Comprehensive histopathological analysis of gastric cancer in European and Latin America populations reveals differences in PDL1, HER2, p53 and MUC6 expression.

Gastric Cancer

January 2025

Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.

Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.

Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.

View Article and Find Full Text PDF

Background/purpose: Although metabolic dysfunction-associated steatotic liver disease (MASLD) has been proposed to replace the diagnosis of non-alcoholic fatty liver disease (NAFLD) with new diagnostic criteria since 2023, the genetic predisposition of MASLD remains to be explored.

Methods: Participants with data of genome-wide association studies (GWAS) in the Taiwan Biobank database were collected. Patients with missing data, positive for HBsAg, anti-HCV, and alcohol drinking history were excluded.

View Article and Find Full Text PDF

Pharmacological Management of IgG4-Related Disease: From Traditional to Mechanism-Based Targeted Therapies.

Drugs Aging

January 2025

Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

IgG4-related disease (IgG4-RD) is an immune-mediated disorder characterized by organ enlargement and dysfunction. The formation of tertiary lymphoid tissues (TLTs) in affected organs is crucial for understanding IgG4-RD, as T follicular helper (Tfh) 2 cells within TLTs drive IgG4+B cell differentiation, contributing to mass formation. Key cytokines IL-4 and IL-10, produced by Tfh2 cells, are essential for this process.

View Article and Find Full Text PDF

TiRobot-assisted versus freehand femoral neck system placement in the treatment of femoral neck fractures: a systematic review and meta-analysis.

J Robot Surg

January 2025

The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, 804 Shengli South Street, Hui Autonomous Region, Yinchuan, Ningxia, 750004, People's Republic of China.

The purpose of this study is to assess the safety and effectiveness of TiRobot-assisted treatment for femoral neck fractures, in comparison to traditional freehand treatment methods. Throughout the research process, we conducted an extensive literature search across numerous databases, including PubMed, EMBASE, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), CQVIP, and Wanfang. Based on the literature screening criteria, we selected six studies, encompassing 358 cases of femoral neck fracture patients, for this meta-analysis.

View Article and Find Full Text PDF

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!