Homodesmotic reaction and isodesmotic reaction were designed for the computation of strain energies (SE) for a series of cubane derivatives. Total energies of the optimized geometric structures at the DFT-B3LYP/6-31G* level were used to derive the SE. The SE value of cubane is 169.13 kcal/mol for homodesmotic reaction, which is in good agreement with the experimental value. The variation of SE with respect to the number of substituents is similar for the homodesmotic reaction and isodesmotic reaction. The SE values of polynitrocubane and polydifluoroaminocubane increase slightly as up to four substituent groups being added to the cage skeleton. On contrary, the SE dramatically increases when the number of substituent groups m increases from 5 up to 8. For polynitratocubane, the SE decreases slightly at the beginning then increases as the number of group increases. For polyazidocubane, there are very small group effects on the SE. Among four types of substituent groups, the nitro group has greatest effect on the strain energy of caged cubane skeleton. The calculated SE value of octanitrocubane is 257.20 kcal/mol, while that of octaazidocubane is 166.48 kcal/mol via isodesmotic reaction. The azido group releases the strain energy of cubane skeleton when the number of azido groups is less than 7. The interactions among the substituted groups deviated from group additivity. The substituted groups withdraw electrons from the cubane, reducing the repulsion between C-C bonds and resulting the release the strain of the skeleton for isomers with fewer substituents. Group repulsions increase sharply with more and more nitro, nitrato and difluoroamino groups being attached to cubane, resulting large strains of the skeleton. The average negative charges of the substituted groups influence the strain energy of cubane derivatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2007.05.075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!