Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Cerebral oxidative stress and metabolic dysfunction impede neurological recovery from cardiac arrest-resuscitation. Pyruvate, a potent antioxidant and energy-yielding fuel, has been shown to protect against oxidant- and ischemia-induced neuronal damage. This study tested whether acute pyruvate treatment during cardiopulmonary resuscitation can prevent neurological dysfunction and cerebral injury following cardiac arrest.
Methods: Anesthetized, open-chest mongrel dogs underwent 5 min cardiac arrest, 5 min open-chest cardiac compression (OCCC), defibrillation and 3-day recovery. Pyruvate (n=9) or NaCl volume control (n=8) were given (0.125 mmol kg(-1) min(-1) i.v.) throughout OCCC and the first 55 min recovery. Sham dogs (n=6) underwent surgery and recovery without cardiac arrest-resuscitation.
Results: Neurological deficit score (NDS), evaluated at 2-day recovery, was sharply increased in NaCl-treated dogs (10.3+/-3.5) versus shams (1.2+/-0.4), but pyruvate treatment mitigated neurological deficit (NDS=3.3+/-1.2; P<0.05 versus NaCl). Brain samples were taken for histological examination and evaluation of inflammation and cell death at 3-day recovery. Loss of pyramidal neurons in the hippocampal CA1 subregion was greater in the NaCl controls than in pyruvate-treated dogs (11.7+/-2.3% versus 4.3+/-1.2%; P<0.05). Cardiac arrest increased caspase-3 activity, matrix metalloproteinase activity, and DNA fragmentation in the CA1 subregion; pyruvate prevented caspase-3 activation and DNA fragmentation, and suppressed matrix metalloproteinase activity.
Conclusion: Intravenous pyruvate therapy during cardiopulmonary resuscitation prevents initial oxidative stress and neuronal injury and enhances neurological recovery from cardiac arrest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737333 | PMC |
http://dx.doi.org/10.1016/j.resuscitation.2007.04.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!