The aims of this study were to detect Burkholderia cepacia complex (Bcc) strains in a cohort of Cystic Fibrosis patients (n=276) and to characterize Bcc isolates by molecular techniques. The results showed that 11.23% of patients were infected by Bcc. Burkholderia cenocepacia lineage III-A was the most prevalent species (64.3%) and, of these, 10% was cblA positive and 50% esmR positive. Less than half of the strains were sensitive to ceftazidime, meropenem, piperacillin tazobactam, and trimethoprim-sulfamethoxazole. About half of the strains (41%) had homogeneous profiles, suggesting cross-transmission. The infection by B. cenocepacia was associated to a high rate of mortality (p=0.01).
Download full-text PDF |
Source |
---|
Microb Pathog
January 2025
Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea. Electronic address:
Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B.
View Article and Find Full Text PDFWater Res
January 2025
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China. Electronic address:
The ubiquitous presence, potential toxicity, and persistence of 2-ethylhexyl diphenyl phosphate (EHDPP) in the environment have raised significant concerns. In this study, we successfully isolate a novel microbial consortium, named 8-ZY, and we demonstrate its remarkable ability to degrade EHDPP using an extremely low concentration of the inoculate. A total of 11 degradation metabolites were identified, including hydrolysis, hydroxylated, methylated, glucuronide-conjugated, and previously unreported byproducts, enabling us to propose new transformation pathways.
View Article and Find Full Text PDFJ Clin Microbiol
January 2025
Department of Pathology, Harbor-UCLA Medical Center, Torrance, California, USA.
The complex (BCC) is a group of Gram-negative bacteria that cause opportunistic infections, most notably in people with cystic fibrosis (CF), and have been associated with outbreaks caused by contaminated medical products. Antimicrobial susceptibility testing (AST) is often used to guide treatment for BCC infections, perhaps most importantly in people with CF who are being considered for lung transplant. However, recent studies have highlighted problems with AST methods.
View Article and Find Full Text PDFSurg Infect (Larchmt)
January 2025
Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan.
Stent graft infection (SGI) caused by complex is rare. The usage of ascending-to-descending aortic bypass (ADAB) in such situations has not yet been fully discussed. Case report and literature review.
View Article and Find Full Text PDFToxics
December 2024
Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil.
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!