Brain-derived neurotrophic factor (BDNF) is involved in hippocampal functions such as learning and memory and it plays a crucial role in regulating synaptic plasticity. To investigate potential mechanisms by which BDNF participates in neuronal communication through postsynaptic membrane proteins, we generated monoclonal antibodies against the synaptoneurosomal particulate fraction of mouse brain. One of the monoclonal antibodies, termed mAb#27, was found to be useful for analyzing BDNF-induced externalization of synaptoneurosomal membrane proteins of the hippocampus. In dissociated neuronal cultures, BDNF stimulation increased mAb#27 immunoprecipitates of biotin-labeled proteins with apparent masses, 55kDa, 80kDa, 100kDa, 130kDa, 140kDa and 160kDa. The mAb#27 recognition molecules were located in specific hippocampal regions of the brain and at postsynaptic sites in cultured cells. Proteomic studies of the mAb#27 immunocomplex identified newly derived short forms of tenascin R (TNR) as the mAb#27 recognition molecule. Contactin 1, prostaglandin regulatory-like protein and GABA A receptor subunit beta3 were identified as TNR-associated proteins. These proteins were recruited to mAb#27 when BDNF was applied to cells in culture. Each molecules identified in the present study contributes to the postsynaptic plasticity or the active cycle of cellular vesicle membranes. The formation of the TNR complex may serve as an underlying basis for synaptic plasticity in the hippocampus. Our results demonstrate that BDNF plays a role in external molecular dynamics and is likely to regulate synaptic functions such as the enhancement of neuronal excitability through GABAergic neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2007.05.012 | DOI Listing |
Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC.
View Article and Find Full Text PDFIntroduction: Neurotrophic factors are widely known for their protective effect on spiral ganglion neurons (SGN) and the protection of these neurons is of great importance to optimize Cochlear Implants, which directly stimulate SGN in deaf patients. Previous studies have identified Cometin - also known as Meteroin-like - to be neuroprotective and beneficial for metabolic disorders. The aim of our study was to investigate the effects of different concentrations of recombinant human Cometin (hCometin) on SGN in regard to neuroprotection and neurite outgrowth and to evaluate its neurite guidance potential using a neurite outgrowth chamber.
View Article and Find Full Text PDFIntroduction: CarboxypeptidaseE (CPE) is an enzyme involved in the neuropepetides/hormones processing. Its deficiency is associated with endocrinopathies comparable to those caused by proprotein convertase1/3(PC1/3) deficiency. In this case report we expand the clinical features of CPE deficiency by examining the index case's clinical/laboratory results, which are also indicative of PC1/3 deficiency.
View Article and Find Full Text PDFAm J Pathol
January 2025
Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.
View Article and Find Full Text PDFPharmaceutics
January 2025
Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant'Antonio, Italy.
Retinal ganglion cell (RGC) protection represents an unmet need in glaucoma. This study assessed the neuroprotective, antioxidant, and anti-inflammatory effect of a new nutraceutical formulation named Epicolin, based on citicoline, homotaurine, epigallocatechin-3-gallate, forskolin, and vitamins, through in vitro and in vivo studies. The neuroprotective effect of Epicolin or its single components, and Epicolin compared to an untreated control and two marketed formulations [Formulation G (FG) and N (FN)], was evaluated in neuroblastoma cells (SH-SY5Y) challenged with staurosporine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!