Mip/LIN-9 can inhibit cell proliferation independent of the pocket proteins.

Blood Cells Mol Dis

University of Illinois, Department of Pharmacology, 835 S. Wolcott, Room E403 (M/C 868), Chicago, IL 60612, USA.

Published: December 2007

Progression through the G1-phase of the cell cycle requires that cyclin D and CDK4 phosphorylate pRB and the other pocket proteins, p107 and p130. Cyclin E and CDK2 further phosphorylate pRB to complete its inactivation and allow the cell to enter S-phase. These phosphorylation events lead to the inactivation of the antiproliferative effect of the pocket proteins. The pocket proteins are the main targets of CDK4, and its unregulated activity can contribute to carcinogenesis. Mip/LIN9 is a recently described protein with growth suppressor, as well as growth promoting effects due to its ability to stabilize B-Myb and induce genes required for S phase and mitosis. The finding that a mutation that deletes the first 84 amino acids of Mip/LIN-9 corrects the defects of the CDK4 knockout mouse suggests that it should have a growth repressor effect that is blocked by CDK4. However, overexpression of cyclin D only partially blocks the inhibitory effect of Mip/LIN-9 on cell proliferation. Here, we performed experiments to further understand the antiproliferative effect of Mip/LIN-9 within the context of the pocket proteins. Our results suggest that there is a pocket protein-independent mechanism of the Mip/LIN-9 antiproliferative effect since it can be observed in cells with ablation of the three members of the family, and in NIH3T3 cells expressing the adenovirus E1A-12S protein. Altogether, the independence from the pocket proteins and the partial blockade of the antiproliferative effect produced by expression of cyclin D suggest that the role of Mip/LIN-9 downstream of CDK4 may be more closely related to the activation of B-Myb and the induction of S/M genes. Importantly, the regulatory effect of CDK4 is not due to direct phosphorylation of Mip/LIN-9 by this kinase or even CDK2, suggesting an indirect mechanism such as phosphorylation of the pocket proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2184568PMC
http://dx.doi.org/10.1016/j.bcmd.2007.05.006DOI Listing

Publication Analysis

Top Keywords

pocket proteins
28
cell proliferation
8
pocket
8
phosphorylate prb
8
proteins pocket
8
mip/lin-9
7
proteins
7
cdk4
6
mip/lin-9 inhibit
4
cell
4

Similar Publications

Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1.

Proc Natl Acad Sci U S A

January 2025

Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.

View Article and Find Full Text PDF

Structural insights into the role of the prosegment binding loop in a papain-superfamily cysteine protease from Treponema denticola.

Acta Crystallogr F Struct Biol Commun

February 2025

Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.

Periodontal diseases afflict 20-50% of the global population and carry serious health and economic burdens. Chronic periodontitis is characterized by inflammation of the periodontal pocket caused by dysbiosis. This dysbiosis is coupled with an increase in the population of Treponema denticola, a spirochete bacterium with high mobility and invasivity mediated by a number of virulence factors.

View Article and Find Full Text PDF

Identification of promising dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B inhibitors from selected terpenoids through molecular modeling.

Bioinform Adv

December 2024

Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria.

Motivation: Investigating novel drug-target interactions is crucial for expanding the chemical space of emerging therapeutic targets in human diseases. Herein, we explored the interactions of dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B with selected terpenoids from African antidiabetic plants.

Results: Using molecular docking, molecular dynamics simulations, molecular mechanics with generalized Born and surface area solvation-free energy, and density functional theory analyses, the study revealed dipeptidyl peptidase-4 as a promising target.

View Article and Find Full Text PDF

OaPAC, the photoactivated adenylyl cyclase from , is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site.

View Article and Find Full Text PDF

Introduction: An efficient procedure was reported for the synthesis of novel hybrid dithiazoles 7 and thiazoles 15, in good yields, by applying hydrazonyl chlorides 4 with thiocarbohydrazone derivatives 3 and 12.

Methods: The thiazole derivatives were evaluated for their antimicrobial and antioxidant activities.

Results: According to the results, thiazoles revealed marked potency as antimicrobial and antioxidant agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!