Recombinant human P2X(7) receptors, C-terminally labelled with enhanced green fluorescent protein (P2X(7)-EGFP), were transiently expressed in HEK293 cells. Activation of these receptors by their preferential agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) induced inward currents and propidium ion uptake indicating the opening of cationic channels and of large pores permeable for dye molecules, respectively. Two mutants of P2X(7) receptors (P2X(7)-EGFP-I568N, -E496A) representing polymorphisms in the P2X(7) gene known to interfere with normal receptor-trafficking and with optimal assembly of its subunits, responded with much lower current amplitudes to BzATP than their wild-type counterpart. Similarly, the normal propidium ion uptake induced by BzATP at the wild-type P2X(7) receptor was abolished by the two mutants. Confocal laser scanning microscopy indicated that in vitro ischemia of 12h duration increased the integration of P2X(7)-EGFP, but not of its two mutants, into the plasma membrane of HEK293 cells. Further, this ischemic stimulus facilitated the current response to BzATP in HEK293 cells permanently transfected with P2X(7) receptors. Finally, the fluorescence intensity per cell measured by flow cytometry and P2X(7) antibodies directed against an extracellular, but not an intracellular epitope of the receptor, were also increased. In conclusion, P2X(7) receptors may alter their trafficking properties during ischemia and thereby contribute to the ATP-induced damage of various cell-types including neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2007.05.028DOI Listing

Publication Analysis

Top Keywords

p2x7 receptors
20
hek293 cells
16
p2x7
8
plasma membrane
8
membrane hek293
8
propidium ion
8
ion uptake
8
bzatp wild-type
8
receptors
6
oxygen/glucose deprivation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!