AI Article Synopsis

Article Abstract

The formation of HEMF[2(or 5)-ethyl-5(or 2)-methyl-4-hydroxy-3(2H)-furanone], the aroma component specific to miso and soy sauce, was promoted by cultivating the halo-tolerant yeast, Zygosaccharomyces rouxii, in a medium including the amino-carbonyl reaction products based on ribose and glycine. The glucose concentration in the medium influenced the HEMF formation by Z. rouxii.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.60715DOI Listing

Publication Analysis

Top Keywords

amino-carbonyl reaction
8
ribose glycine
8
aroma component
8
component specific
8
specific miso
8
halo-tolerant yeast
8
effects amino-carbonyl
4
reaction ribose
4
glycine formation
4
formation 2or
4

Similar Publications

Homo-Mannich Reaction of Cyclopropanols: A Versatile Tool for Natural Product Synthesis.

Acc Chem Res

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.

ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.

View Article and Find Full Text PDF

This study describes a microfluidic thread-based analytical device (μTAD) capable of in situ mass spectrometric analysis for continuous flow reaction monitoring. Organic reaction screening is foundational to drug discovery. Microfluidic devices are of special interest here because they provide continuous reaction monitoring with advantages such as the use of smaller reagent volumes and short analysis times.

View Article and Find Full Text PDF

This study investigates the repurposing of asphaltene, a petroleum waste product, as a catalyst for organic reactions. Sulfonated asphaltene was synthesized and evaluated for its efficacy in catalyzing the Mannich reaction, displaying notable diastereoselectivity and operating effectively under mild conditions. Characterization of the catalyst's chemical composition, structure, and thermal stability was conducted using FT-IR, TGA, XRD, CHN, BET-BJH, SEM, and EDS analyses.

View Article and Find Full Text PDF

This study leverages accelerated reactions at the solution/air interface of microdroplets generated by desorption electrospray ionization (DESI) to explore the chemical space. DESI is utilized to synthesize drug analogs at an overall rate of 1 reaction mixture per second, working on the low-nanogram scale. Transformations of multiple drug molecules at specific functionalities (phenol, hydroxyl, amino, carbonyl, phenyl, thiophenyl, and alkenyl) are achieved using electrophilic/nucleophilic, redox, C-H functionalization, and coupling reactions.

View Article and Find Full Text PDF

In vivo glycation-interplay between oxidant and carbonyl stress in bone.

JBMR Plus

November 2024

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States.

Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!