The entomopathogenic Autographa californica (Speyer) nucleopolyhedrovirus (AcMNPV) has been genetically modified to increase its speed of kill. The potential adverse effects of a recombinant AcMNPV (AcAaIT) as well as wild type AcMNPV and wild type Spodoptera littoralis NPV (SlNPV) were studied. Cotton plants were treated with these viruses at concentrations that were adjusted to resemble the recommended field application rate (4 x 10(12) PIBs/feddan, feddan = 4,200 m2) and 3rd instar larvae of S. littoralis were allowed to feed on the contaminated plants. SDS-PAGE, ELISA, and DNA analyses were used to confirm that larvae that fed on these plants were virus-infected. Polyhedra that were purified from the infected larvae were subjected to structural protein analysis. A 32 KDa protein was found in polyhedra that were isolated from all of the viruses. Subtle differences were found in the size and abundance of ODV proteins. Antisera against polyhedral proteins isolated from AcAaIT polyhedra were raised in rabbits. The terminal bleeds from rabbits were screened against four coating antigens (i.e., polyhedral proteins from AcAaIT, AcAaIT from field-infected larvae (AcAaIT-field), AcMNPV, and SlNPV) using a two-dimensional titration method with the coated antigen format. Competitive inhibition experiments were conducted in parallel to optimize antibody and coating antigen concentrations for ELISA. The IC50 values for each combination ranged from 1.42 to 163 microg/ml. AcAaIT-derived polyhedrin gave the lowest IC50 value, followed by those of SlNPV, AcAaIT-field, and AcMNPV. The optimized ELISA system showed low cross reactivity for AcMNPV (0.87%), AcAaIT-field (1.2%), and SlNPV (4.0%). Genomic DNAs isolated from AcAaIT that were passaged in larvae of S. littoralis that were reared in the laboratory or field did not show any detectable differences. Albino rats (male and female) that were treated with AcAaIT, AcMNPV or SlNPV (either orally or by intraperitoneal injection at doses of 1 x 10(8) or 1 x 10(7) PIBs/rat, respectively) appeared to be healthy and showed increased body weight at 21 days posttreatment. The effect of virus administration on hematological, serum biochemical, and histopathological parameters were determined. Slight to moderate differences were observed in most of the hematological parameters. Specifically, serum proteins were decreased markedly in female rats treated orally with SlNPV, and in male rats injected with AcAaIT. SDS-PAGE analysis also showed some changes in serum protein profiles. No marked changes in acetylcholine esterase (AChE) activity were found. Changes in serum glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, creatinin, and urea were also observed. Immunohistochemical observation of tissues from stomach, intestine, liver, kidney, brain, spleen, and lung also showed slight changes. Fish (Tilapia nilotica) were also exposed to AcAaIT, AcMNPV or SlNPV by incorporating each of the viruses into diet (1 x 10(9) PIBs/group). No mortality was found in treated or untreated fish during the experimental period (28 days). Macrophage phagocytic activity of fish head kidney cells increased with time, reaching maximum values at 180 min for both treated and control fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728576PMC
http://dx.doi.org/10.3390/ijerph2007040005DOI Listing

Publication Analysis

Top Keywords

wild type
12
acmnpv slnpv
12
acmnpv
8
acaait
8
larvae littoralis
8
polyhedral proteins
8
isolated acaait
8
acaait-field acmnpv
8
acaait acmnpv
8
changes serum
8

Similar Publications

This study compared the dynamics of SARS-CoV-2 viral shedding in saliva between wild-type virus-infected and Omicron-infected household cohorts. Pre-existing immunity in participants likely shortens the viral RNA shedding duration and lowers viral load peaks. Frequent saliva sampling can be a convenient tool to study viral load dynamics.

View Article and Find Full Text PDF

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.

View Article and Find Full Text PDF

Plant architecture greatly contributes to grain yield, but the epigenetic regulation of plant architecture remains elusive. Here, we identified the maize (Zea mays L.) mutant plant architecture 1 (par1), which shows reduced plant height, shorter and narrower leaves, and larger leaf angles than the wild type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!